Magnetical and Meteorological OBSERVATIONS

MADE AT

THE ROYAL OBSERVATORY, GREENWICH,

IN THE YEAR

1910

UNDER THE DIRECTION OF
Sir W. H. M. CHRISTIE, K.C.B., M.A., D.Sc., F.R.S., LATE ASTRONOMER ROYAL

AND
F. W. D Y S O N, M.A., LL.D., F.R.S., astronomer royal.

PUBLISHED BY ORDER OF THE BOARD OF ADMIRALTY, IN OBEDIENCE TO HIS MAJESTY'S COMMAND.

EDINBURGH:
PRINTED FOR HIS MAJESTY'S STATIONERY OFFICE By NEill \& Co., Limited, Bellevue.
1912.
[All Rights Reserved.]

MAGNETICAL AND METEOROLOGICAL OBSERVATIONS.

1910 RESULTS.
Page E 9, Footnote, for $\cdot 18532$, read $\cdot 18531$.
,, E 10, , for $\cdot 18532$, read $\cdot 1853 \mathrm{I}$.
", E 17, Nov. 7, Corrected Time of Vibration and succeeding columns-
for 5 8.8036, $0 \cdot 13346,0 \cdot 3379,4 \cdot 0244, \cdot 18556, \cdot 18517$,
read $5^{8.8103}, 0 \cdot 13246,0.3375,4 \cdot 0198, \cdot 18534, \cdot 18495$.

read $4 \cdot 0183, \cdot 18528, \cdot 18531$.
, E I8, Note at Heading, for ${ }^{\prime}$ I8532, read $\cdot 1853$ I.

1891 RESULTS.
,, (xxxviii), Col. 19, Rainfall on May 15, for 0.025 , read 0.225 .

I N D E X.

DARLINGTON puelig librafy
INTRODUCTION. PAGE
Personal Establishment and Arrangements Ei
General Description of the Buildings and Instruments Ei
Subjegts of Observation E ii
Magnetic Instruments-
Deglination Magnet for Absolute Determinations E iii
Dip Instrumant E iv
Corrections to previous Dip Results E v
Deflection Instrument E vi
Declination Variometer E viii
Horizontal Force Variometer Eix
Vertical Force Variometer Exii
Magnetic Reductions Exiii
Table of Magnetic Elements determined at Greenwich from 1841 Exix
Meteorological Instruments-
Standard Barometer E xx
Photographic Barometer Exxi
Dry and Wet Bulb Thermometers Exxii
Photographic Dry and Wet Bulb Thermometers Exxiv
Radiation Thermometers Exxv
Earth Thermometers Exxvi
Osler's Anemometer Exxyii
Robinson's Anemometer Exxviii
Rain-Gauges Exxix
Electromettrir Exxyi
Sunshine Recorder Exxxi
Ozonometer Exxxii
Meteorological Reduotions Exxxii
RESULTS OF MAGNETICAL AND METEOROLOGICAL OBSERVATIONS IN TABULAR ARRANGEMENT:- page
Results of Magnetical Observations E 1
Table I.-Mean Magnetic Declination West for each Civil Day E 2
Table II.-Monthly Mean Diurnal Inequality of Magnetic Declination West E 2
Table III.-Mean Horizontal Magnetic Force (diminished by a Constant) for each Civil Day E 3
Table IV.-Mean Temperature for each Civil Day within the box inclosing the Horizontal Force Magnet E 4
Table V.—Monthly Mean Diurnal Inequality of Horizontal Magnetic Force E 5
Table VI.-Monthly Mean Temperature at each Hour of the Day within the box inclosing the Horizontal Force Magnet E 5
Table VII.-Mean Vertical Magnetic Force (diminished by a Constant) for each Civil Day E 6
Table VIII.-Mean Temperature for each Cigil Day within the box inclosing the Vertical Force Magnet. E 7
Table IX.—Monthly Mean Diurnal Inequality of Vertical Magnetic Force E 8
Table X.-Monthly Mean Temperature at each Hour of the Day within the box inclosing the Vertical Force Magnet E 8
Table XI.—Mean Magnetic Declination, Horizontal Force, and Vertical Force, in each Month E 9
Table XII.-Mean Diurnal Inequalities of Magnetic Declination, Horizontal Force, and Vertical Force, for the year E 10
Table XIII.-Diurnal Range of Declination and Horizontal Force on each Civil Day, as deduced from the Twenty-four Hourly Measures of Ordinates of the Photographic Register E 11
Table XIV.-Monthly Mean Diurnal Range, and Sums of Hourly Deviations from Mean, for Declination, Horizontal Force, and Vertical Force, as deduced from the Monthly Mean Diurnal Inequalities E 11
Table XV.-Values of the Coefficients in the Periodical Expression-

$$
\mathrm{V}_{t}=m+a_{1} \cos t+b_{1} \sin t+a_{2} \cos 2 t+b_{2} \sin 2 t+\& c
$$

for the Magnetic Diurnal Inequalities E 12
Table XVI.-Values of the Coefficients and Constant Angles in the Periodical Expressions-

$$
\begin{aligned}
& \mathrm{V}_{t}=m+c_{1} \sin (t+a)+c_{2} \sin (2 t+\beta)+\& \mathrm{c} \\
& \mathrm{~V}_{t^{\prime}}=m+c_{1} \sin \left(t^{\prime}+a^{\prime}\right)+c_{2} \sin \left(2 t^{\prime}+\beta^{\prime}\right)+\& \mathrm{c} .
\end{aligned}
$$

for the Magnetic Diurnal Inequalities E 13
Table XVII.-Results of Observations of Magnetic Dip E 14
Table XVIII.-Monthly and Yearly Means of Magnetic Dip E 15
Table XIX.-Determinations of the Absolute Value of Horizontal Magnetic Force E 16
Magnetic Diurnal Inequalities for the Mean of Five selected quiet Days in each Month E 18
Table XX.-Monthly Mean Diurnal Inequality of Magnetic Declination West E 18

I N DEX.

results of magnetical and meteorological observations-continued. PAGE
: Table XXI.-Monthly Mean Diurnal Inequality of Horizontal Magnetic Force E 19
Table XXII.—Monthly Mean Diurnal Inequality of Vertical Magnetic Force E 20
Magnetic Disturbances E 21
Brief description of Magnetic Movements (superposed on the ordinary diurnal movement) exceeding 3^{\prime} in Declination, 0.0010 in Horizontal Force, or 0.0003 in Vertical Force, taken from the Photographic Register E 22
Esplanation of the Plates of Magnetic Disturbances E 36
Plates I.-III., photo-lithographed from tracings of the Photographic Registers of Magnetic Disturbances.
Plate IV., photo-lithographed from tracings of the Photographic Registers of Magnetic Movements, as types of the Diurnal Variations, at four seasons of the year.
Results of Metrorological Observations E 37
Daily Results of the Meteorological Observations E 38
Highest and Lowest Readings of the Barometer E 62
Absolute Maxima and Minima Readings of the Barometer for each Month E 62
Monthly Results of Meteorological Elements E 63
Monthly Mean Reading of the Barometer at every Hour of the Day E 64
Monthly Mean Temperature of the Air at every Hour of the Day E 64
Monthly Mean Temperature of Evaporation at every Hour of the Day E 65
Monthly Mean Temperature of the Dew-Point at every Hour of the Day E 65
Monthly Mean Degree of Humidity at every Hour of the Day E 66
Total Amount of Sunshine registered in each Hour of the Day in each Month E 66
Readings of Thermometers on the ordinary stand in the Magnetic Pavilion Enclosure E 67
Excess of Readings in Stevenson Screen above those in ordinary stand E 70
Amount of Rain collected in each Month by the different gauges E 70
Earth Thermometers E 71
Abstract of the Changes of the Direction of the Wind, as derived from the Records of Osler's Anemometer E 76
Mean Hourly Measures of the Horizontal Movement of the Air in each Month, and Greatest and Least Hourly Measures as derived from the Records of Robinson's Anemometer E 83
Mean Electrical Potential of the Atmosphere, from Thomson's Electrometer, for each Civil Day E 84
Monthly Mean Electrical Potential of the Atmosphere, from Thomson's Electrometer, at every Hour of the Day E 85

- Monthly Mean Electrical Potential of the Atmosphere, from Thomson's Electrometer, on Rainy Days, at every Hour of the Day E 86
Monthly Mean Electrical Potential of the Atmosphere, from Thomson's Electrometer, on Non- Rainy Days, at every Hour of the Day E 87
Observations of Parhelia and Parasklene. E 90
Orservations of Luminous Meteors E 92

GREENWICH MAGNETICAL AND METEOROLOGICAL OBSERVATIONS,
 1910.

Introduction.

DARLINGTON public librant

In the present volume a sufficient account is given of the instruments and methods of reduction now in use. In future years only such particulars will be given as are necessary in order to understand the Tables. Descriptions of new instruments or methods, and of changes in instruments or methods, will be given, and all changes dating from the present year will be mentioned in each Introduction. The Introduction will be repeated in a full and revised form at convenient intervals.
§ 1. Personal Establishment and Arrangements.
During the year 1910 the personal establishment in the Magnetical and Meteorological Department of the Royal Observatory consisted of Walter William Bryant, Superintendent, aided by one Established Computer, David J. R. Edney, and four Computers. The Computers employed during the year were :--Edward Kirby, William H. Timbury, Arthur E. Loomes, Ernest L. Richardson, and Sydney T. Divers.

Mr. Bryant controls and superintends the whole of the work of the Department. The routine magnetical and meteorological observations are in general made by the Computers.

§ 2. General Description of the Buildings and Instruments of the Magnetical and Meteorological Observatory.

The buildings and instruments remained substantially unchanged throughout the year 1910. For a detailed historical account of them, reference should be made to the Introductions to earlier volumes of these observations.

Greenwich Magnetical and Meteorological Observations, 1910.

The instruments for photographic registration of changes in the atmospheric pressure, magnetic declination, and horizontal and vertical magnetic force, are situated in an underground chamber (known as the Magnet Basement) ; this chamber is kept at a nearly uniform temperature by means of gas stoves. The small variations of temperature are recorded on a Richard thermograph. In the same room there are two mean solar clocks, one being of peculiar construction in order to interrupt the photographic traces at each hour. All these instruments are mounted on or suspended from supports carried by piers built from the ground.

In a wooden building (called the Magnet House) above this chamber are placed the standard barometer, and a Thomson electrometer for photographic registration of the variations of atmospheric electricity. A platform erected above the roof of the Magnet House is used for the observation of meteors; and a nephoscope is mounted there for occasional observations. On the same platform there is a rain-gauge, at a height of 20 feet above the ground.

Near the Magnet House, on what is known as the Magnet Ground, are the earth thermometers, the photographic dry and wet-bulb thermometer apparatus, a rain-gauge, and a set of thermometers in a Stevenson screen.

The Magnet House is built of non-magnetic material, but during the years 18911898 considerable masses of iron were introduced into its neighbourhood by the building of certain additions to the Observatory. Hence the instruments which were formerly placed in the Magnet House, for absolute determinations of magnetic declination, dip, and horizontal force, were transferred to the Magnetic Pavilion. This building is constructed of non-magnetic materials, and stands in an enclosure in Greenwich Park, 350 yards to the east of the Observatory, on a site carefully chosen for its freedom from abnormal magnetic conditions. In the enclosure there are three sets of thermometers used for ordinary eye observations, the thermometers for solar and terrestrial radiation, and two rain-gauges.

The anemometers, three rain-gauges, and the sunshine recorder are fixed above the roof of the Octagon Room (the ancient part of the Observatory).

§ 3. Subjects of Observation in the year 1910.

The observations comprise determinations of absolute magnetic declination, hor1zontal force, and dip ; continuous photographic record of the variations of declination, horizontal force, and vertical force; eye observations of the ordinary meteorological
instruments, including the barometer, dry and wet-bulb thermometers, radiation and earth thermometers, and of thermometers placed on the roof of the Magnet House ; continuous photographic record of the variations of the barometer, dry and wet-bulb thermometers, and electrometer (for atmospheric electricity); continuous automatic record of the direction, pressure, and velocity of the wind, and of the amount of rain ; registration of the duration of sunshine, and amount of ozone ; observations of some of the principal meteor showers; general record of ordinary atmospheric changes of weather, including numerical estimation of the amount of cloud, special cloud observations in connection with the International Balloon ascents, and occasional phenomena.

Since 1885, Greenwich civil time, reckoning from midnight to midnight, and counting from 0 to 24 hours, has been employed throughout the magnetical and meteorological sections.

§ 4. Mugnetic Instruments.

Declination Magnet for Absolute Determinations.-Since 1899 January 1, regular observations of declination have been made in the Magnetic Pavilion. The hollow cylindrical magnet Elliot No. 75 is used in conjunction with a telescope by Troughton and Simms, placed on a pier about 2 feet south of the magnet. The magnet is about 4 inches long, and at one end is an engraved glass scale for collimation. The telescope is 21 inches long, and the aperture of its object-glass is 2 inches; its horizontal circle is 16.6 inches in diameter, divided to 5^{\prime} and read by verniers to $5^{\prime \prime}$. It has no vertical circle. The eye-piece has one fixed horizontal wire and one vertical wire, moved by a micrometer screw, the value of one revolution of which is $1^{\prime} 34^{\prime \prime} \cdot 2$. The adopted collimation reading throughout the year was $100^{\mathrm{r}} 280$.

The vertical axis of the telescope is adjusted by means of a fixed level, one division of which corresponds to $1^{\prime \prime} \cdot 15$. The level correction for inequality of the pivots of the axis of the telescope was found in 1898 to be $-6^{\mathrm{div} \cdot 0} 0$ or $-6^{\prime \prime} \cdot 9$.

The reading of the azimuth circle corresponding to the astronomical meridian is determined by observations of Polaris, taken once a week whenever practicable. The collimation error of the magnet collimator is also determined weekly, by observing the position of the magnet in its usual position with the scale direct, then with the scale reversed (by turning the magnet through 180° in its carrier, about the longitudinal axis); the observations are repeated quickly several times. In the reduction of the observations of declination, the determinations of collimation error and azimuth zero reading are combined into half-yearly means.

The torsion effect of the silk suspending skein is eliminated as nearly as possible, and any small effect still remaining is allowed for. The reading of the torsion circle, which corresponds to free suspension in the plane of the magnetic meridian, and the ratio of the torsion couple, due to 90° of twist on the thread, to the couple due to the Earth's horizontal magnetic force, are determined weekly.

Declination observations are usually made four times daily, at $9^{\mathrm{h}}, 12^{\mathrm{h}}, 15^{\mathrm{h}}$, and 21^{h}.
Dip Instrument.--This instrument was designed by Sir G. B. Airy, and constructed by Troughton and Simms. It is mounted in the Magnetic Pavilion on a slate slab supported by a braced wooden stand built upon a pier insulated from the floor. It was designed so that needles of three different lengths could be used, but in practice only those 3 inches in length have been used since 1898 September 30. The pivots of the needles rest on agate bearings within a gun-metal box with back and front of glass. On the inner side of the front glass (which is parallel to the plane of vibration of the needle) is etched a graduated circle, $9 \frac{3}{4}$ inches in diameter, divided to 10^{\prime} and read by two verniers to $10^{\prime \prime}$. The verniers are thin plates of metal with notches instead of marks, for use with transmitted light. They are attached to a frame which can move about a horizontal axis nearly coincident with the pivot axis of the needles; two microscopes are mounted on this frame, for observation of the two ends of the needle.

The inclination of the needle is observed by turning the movable frame till the two ends of the needle (seen as a dark object in a bright field) come into view in the microscopes. The position of the movable frame is read by the circle and verniers, and the position of the needle relative to the frame is read off on glass scales within the microscopes. These scales are divided to $1000^{\prime \prime}$, and can be read by estimation to $100^{\prime \prime}$. A brass zenith-point needle is used to determine the zenith-point reading.

The gun-metal box is mounted on a circular horizontal plate which can be rotated in azimuth, its position being read on a graduated circle by fixed verniers.

There are two levels, at right angles, on the base-plate; the level is adjusted from time to time, and the readings of dip are corrected for any small outstanding level error (generally amounting to a few seconds of arc).

Observations are made only in the plane of the magnetic meridian. The needle is first magnetised by double touch, giving it nine strokes on each of its sides. Its inclination to the horizontal, when placed in the instrument, having been read, the whole apparatus is reversed in azimuth, and another reading taken. The needle pivots are then reversed on the agate bearings, and two more observations, in reversed posi-
tions of the instrument, are made. We will denote the mean of these four determinations of dip by θ_{1}. The needle is then taken out, remagnetised in the reverse direction, and four more observations are made in the same way, giving another mean reading θ_{2}.

Dip observations are made twelve times in each calendar month, at approximately equal intervals.

A systematic difference between θ_{1} and θ_{2} is assumed to indicate that the mass centre of the needle is not in the axis of the pivots. It may easily be seen that, on this supposition, the true inclination θ is given by the relation,

$$
\tan \theta=\frac{1}{2}\left(\tan \theta_{1}+\tan \theta_{2}\right) .
$$

The values of the dip given in this volume are obtained from this formula.
The formula for the dip which has hitherto been adopted is

$$
\theta^{1}=\frac{1}{2}\left(\theta_{1}+\theta_{2}\right) .
$$

The difference between θ and θ^{1} varies approximately as the square of $\theta_{1}-\theta_{2}$, and becomes appreciable only when the needle is in bad adjustment. As it is always of the same sign, however, it has been decided to apply it as a correction to the values of the dip given in preceding years, as in the following table:-

Correction	1868	1869	1870	1871	1872	1873	1874	1875	1876	1877	1878	1879	1880	1881	1882
B_{1}	$+{ }^{\prime \prime} 6$	+"9	+"3	+"2	-9	+"4	- "1	$+{ }^{\prime \prime} 2$	+ ${ }^{\prime \prime}$	+"3	+"2	+"3	+ 4	+"3	+"3
B_{2}	+10	+23	+ 4	- 1	-5	+ 7	-4	+2	+ 4	+ 3	+ 3	+ 1	+ 1	+ 2	+ 2
C_{1}	$+4$	+15	+12	+ 9	$+7$	+20	+13	+16	+18	+19	+ 2	+ 3	+29	$+23$	+23
C_{2}	-3	+9	+ 7	+ 3	- 5	$+6$	-3	+3	+ 2	+ 2	+ 2	+3	+1	$+1$	+ 1
D D_{2}	- 1 +1	+7 +10	+2 +8	0 $+\quad 4$	-10	+10 +12	- 4 $+\quad 1$	0 $+\quad 3$	0 $+\quad 3$	+3 +3	+7 $+\quad 4$	0 $+\quad 5$			+2 +6
	1883	1884	1885	1886	1887	1888	1889	1890	1891	1892	1893	1894	1895	1896	1897
B_{1}	$+{ }^{\prime \prime} 3$	+ 4	+"6	+"2	+-" 1	+'11	$+^{\prime \prime} 1$	$+{ }^{\prime \prime}{ }_{1}$	$+{ }^{\prime \prime} 1$	${ }^{\prime}$	$+{ }^{\prime \prime}$	"。	+ ${ }^{\prime \prime}$	$+{ }^{\prime \prime} 1$	+"2
B_{2}	+1	+ 1	+ 1			$+1$			0	\bigcirc	-	\bigcirc		,	+ 1
C_{1}	$+24$	+25	+24	+24	+30	$+30$	+28	+27	+32	+31	+31	$+30$	+30	$+25$	+28
C_{2}	+ 2	+ 2	+2	+ 3	+1	+ 3	+ 5	+ 8	+ 5	$+4$	+ 4	+ 4	+ 5	+ 4	+ 4
D_{1} D_{2}	+14 +5	+8 +6	$+\quad 9$ +6	+3 +8	+8 +7	+7 +8	+9 +6	+17 $+\quad 4$	+10 +3	+7 $+\quad 5$	+8 $+\quad 5$	+7 +6	+6 +7	+10 +5	+19 +6
	1898	1899	1900	1901	1902	1903	1904	1905	1906	1907	1908	1909	1910		
D_{1}	+ ${ }^{\prime \prime} 5$	+27	+24	+ 29	+30	+"32	+"40	+32	+"'84	+19	+"3	+ "1	" 0		
D_{2}	+ 7	$+9$	+16	+15	+12	+12	+13	+11	+1I	+ 1	0	+22	+22		

Evi Introduction to Greenwich Magnetical Observations, 1910.

The correction is applied only from the beginning of 1868 , since before July 1867 no correction for level was determined. Between the latter date and 1875 January 1, the level error was determined but not applied, so that the correction for level error is combined with the former correction during that period; this accounts for the negative sign of some of the corrections for these years.

Deflection Instrument for Absolute Determinations of Horizontal Force.This instrument (known as Gibson No. 3) is similar to those issued from the Kew Observatory. It is mounted on a slate slab in the Magnetic Pavilion in the same way as the dip instrument.

The deflected magnet is 3 inches long, and carries a small plane mirror, to which is directed a telescope fixed to, and rotating with, the frame that carries also the suspension piece of the deflected magnet: a scale fixed to the telescope is seen by reflexion at the plane mirror. The deflecting magnet is a hollow cylinder 4 inches long, containing in its internal tube a collimator, by means of which in another apparatus its time of vibration is observed. In observations of deflection the deflecting magnet is placed on the transverse deflection rod, carried by the rotating frame, at the distances 1.0 foot and 1.3 foot of the engraved scale from the deflected magnet, and with one end towards the deflected magnet. Observations are made at the two distances mentioned, with the deflecting magnet both east and west of the deflected magnet, and also with its poles in reversed positions. The fixed horizontal circle is 10 inches in diameter : it is graduated to 10^{\prime}, and read by two verniers to $10^{\prime \prime}$.

It will be convenient in this case to include with the description of the instrument an account of the method of reduction employed, in which the Kew precepts, and generally the Kew notation, are followed. Previous to the establishment of the instrument at the Royal Observatory, the values of the various instrumental constants, as determined at the Kew Observatory, were kindly communicated by the late Professor Balfour Stewart, and these have been since used in reduction of all observations made with the instrument at Greenwich.

The instrumental constants as thus furnished are as follows :-
The increase in the magnetic moment of the deflecting magnet produced by the inductive action of unit magnetic force in the English system of absolute measurement $=\mu=0.00015587$.

The correction for decrease of the magnetic moment of the deflecting magnet required in order to reduce to the temperature 35° Fahrenheit $=c$
$=0.00013126(t-35)+0.000000259(t-35)^{2} ; t$ representing the temperature (in degrees Fahrenheit) at which the observation is made.

Moment of inertia of the deflecting magnet $=K$. At temperature 30°, log. $K=0.66643$; at temperature 90°, log. $K=0.66679$.

The distance on the deflection rod from $1^{\mathrm{ft} .0} 0$ east to $\mathrm{I}^{\mathrm{ft} .0}$ west of the engraved scale, at temperature 62°, is too long by 0.0034 inch, and the distance from $1^{\text {ft. }} 3$ east to $1^{\text {ft. }} 3$ west is too long by 0.0053 inch. The coefficient of expansion of the scale for 1° is 00001 .

The adopted value of K was confirmed in the year 1878 by a new and entirely independent determination made at the Royal Observatory, giving log. K at temperature $30^{\circ}=0.66727$.

Let $m=$ Magnetic moment of deflecting or vibrating magnet.
$X=$ Horizontal component of Earth's magnetic force.
Then, if in the two deflection observations, r_{1}, r_{2}, be the apparent distances of centre of deflecting magnet from deflected magnet, corrected for scale-error and temperature (about 1.0 and 1.3 foot),
u_{1}, u_{2} the observed angles of deflection,

$$
\begin{aligned}
& A_{1}=\frac{1}{2} r_{1}^{3} \sin u_{1}\left\{1+\frac{2 \mu}{r_{1}^{3}}+c\right\} \\
& A_{2}=\frac{1}{2} r_{2}^{3} \sin u_{2}\left\{1+\frac{2 \mu}{r_{2}^{3}}+c\right\}
\end{aligned}
$$

$P=\frac{A_{1}-A_{2}}{\frac{A_{1}}{r_{1}-\frac{A_{2}}{r_{2}{ }_{2}^{2}}}}[P$ being a constant depending on the distribution of magnetism in the
we have, using for reduction of the observations a mean value of P :-
$\frac{m}{\bar{X}}=A_{1}\left(1-\frac{P}{r_{1}^{2}}\right)$, from observation at distance r_{1}. $\frac{m}{X}=A_{2}\left(1-\frac{P}{r_{2}^{2}}\right)$, from observation at distance r_{2}.

The mean of these is adopted as the true value of $\frac{m}{X}$.
In calculating the value of P as well as the values of the four factors within brackets, the distances r_{1} and r_{2} are taken as being equal to $1 \cdot 0 \mathrm{ft}$. and $1 \cdot 3 \mathrm{ft}$. respectively. The expression for P is not convenient for logarithmic computation, and, in practice, its

E viii Introduction to Greenwich Magnetical Observations, 1910.

value for each observation has, since the year 1877, been calculated from the expression $\frac{\text { Log. } A_{1}-\text { Log. } A_{2}}{\text { modulus }} \times \frac{r_{1}^{2} \times r_{2}^{2}}{r_{2}^{2}-r_{1}^{2}}=\left(\right.$ Log. $A_{1}-$ Log. $\left.A_{2}\right) \times 5.64$.

For determination, from the observed vibrations, of the value of $m X$:-let $T_{1}=$ time of vibration of the deflecting magnet, corrected for rate of chronometer and are of vibration,
$\frac{H}{F}=$ ratio of the couple due to torsion of the suspending thread to the couple due to the Earth's magnetic force. [This is obtained from the formula $\frac{H}{F}=\frac{\theta}{90^{\circ}-\theta^{\prime}}$, where $\theta=$ the angle through which the magnet is deflected by a twist 90° in the thread.]

$$
\begin{aligned}
& \text { Then } T^{2}=T_{1}^{2}\left\{1+\frac{H}{F}+\mu \frac{X}{m}-c\right\} \\
& \text { and } m X=\frac{\pi^{2} K}{T^{2}} .
\end{aligned}
$$

The corrected time of vibration of the deflecting magnet, printed in the tables of results, is the mean of 100 vibrations observed immediately before, and of 100 vibrations observed immediately after the observations of deflection, corrected for temperature, rate of chronometer, semi-arc of vibration, induction, and torsion force.

From the values of $m X$ and $\frac{m}{X}$ thus calculated, m and X are deduced. The actual computation is made in the British system of units (foot-grain-second). The derived value of X is then reduced to C.G.S. units, as given in the tables.

Observations of the absolute horizontal magnetic force are made twice monthly.
Declination Variometer.-The magnet used in this instrument is 2 feet long, $1 \frac{1}{2}$ inches wide, and $\frac{1}{4}$ inch thick. It is suspended by a skein of silk, consisting of a bundle of fine threads bound together at intervals of 6 or 7 inches: the skein is about 12 feet long, 6 feet of which is vertical. The magnet is taken from its carrier at the beginning of each year, in order to remove any torsion which may have accumulated; this is done by stretching the skein under the weight of a brass torsion rod for a few hours, adjusting the torsion circle till the bar rests in the magnetic meridian. The magnet is enclosed in a double wooden box, and is encircled by a copper damper to reduce accidental vibrations.

The photographic registration takes place in the usual way, on a horizontal cylinder which revolves once in 26 hours; the same sheet also receives the record of the horizontal force variometer. The illumination is by gas-light. The photographic sheets are changed daily at $11 \mathrm{a} . \mathrm{m}$. On each sheet a reference line is photographed, by a
fixed spot of light. The traces are interrupted automatically for 4 minutes at every hour, to afford a time scale. By another shutter the observer occasionally cuts off the light for a few minutes, noting the time; this facilitates the numeration of the hourly breaks. The length of 24 hours on the sheet is about 13.3 inches.

The distance between the concave speculum mirror carried by the magnet, and the surface of the cylinder, is 134.4 inches. Since a movement of the mirror through 1° produces 2° of motion in the reflected ray, a change of 1° in declination corresponds to 4.691 inches on the photographic paper. A card-board strip, graduated on this scale to degrees and minutes, is prepared for reading from the sheets.

The base line is laid down as follows: the movement of the magnet is assumed to be identical with that of the absolute declination magnet, so that every observation with the latter affords a value of the base line. These values (of which four are obtained daily) are taken in monthly groups, the means being adapted for use throughout the corresponding months. Then, by means of the card-board scale, a base line (whose ordinate represents some convenient quantity) is laid down upon each sheet; from this line the hourly ordinates (see p. E xiv) are measured.

No eye readings of the position of this magnet are taken.
Horizontal Force Variometer.-The magnet used in this instrument is 2 feet long, $1 \frac{1}{2}$ inches broad, and about $\frac{1}{4}$ inch thick ; it is enclosed in a double wooden box. The bifilar suspension consists of a silk skein passing under two small pulleys, which are attached to a vernier piece used in connection with a torsion circle on the frame which holds the magnet. The effective length of each branch of the skein is about $7^{\mathrm{ft} .} 6^{\mathrm{in} .}$; the distances between the branches at the upper and lower ends are respectively ${ }^{\text {in. }} 14$ and $0^{\text {in. }} 80$. The present skein was mounted in 1909 December.

The torsion circle is fixed relative to the magnet, while the vernier is movable; the circle is divided to half degrees, and read by vernier to 1^{\prime}. The torsion is adjusted so as to make the magnet hang approximately transverse to the magnetic meridian, the north magnetic pole being west. Accidental vibrations of the magnet are reduced by a copper damper.

The changes of horizontal force are registered photographically on the cylinder already described in connection with the declination variometer; the same reference line is used for each trace, and the arrangements for interruption of the traces are similar.

In the present case eye-readings of the position of the magnet can also be taken by Greenwich Magnetical and Meteorological Observations, 1910.

Ex

means of an auxiliary mirror, telescope, and scale. The eye observations are usually made at $9 \frac{1}{2}^{\mathrm{h}}, 12 \frac{1 \mathrm{~h}}{}{ }^{\mathrm{h}}, 15 \frac{1 \mathrm{~h}}{2}$, and $20 \frac{1}{2} \mathrm{~h}$.

Since 12 inches of the fixed scale corresponds to $30^{\text {div. } .85, ~ w h i l e ~ t h e ~ m i r r o r ~ i s ~} 90.84$ inches distant (in a normal direction) from the scale, it appears that, for a change of one division of scale-reading, the magnet is turned through an angle of $7^{\prime} .21^{\prime \prime} \cdot 6$, or (in circular measure) 0.002141 . We will denote these two corresponding quantities by k and k_{1} respectively.

The magnet should be within two or three degrees of arc on either side of the ideal position (i.e. magnetic east and west direction), if it is to indicate truly the changes in the magnitude of the horizontal magnetic force, without regard to small changes in its direction. Suppose ϕ is the angle of torsion, and θ the circular measure of the deviation of the maguetic axis from the ideal position, θ being reckoned positive when the north pole of the magnet is north of west; then the variation of the horizontal force-in terms of the whole horizontal force as unit-which will produce angular motion of the magnet corresponding to change of one scale-division, is

$$
k(\cot \phi+\tan \theta)
$$

Changes in θ are easily measured by the fixed scale ; but there is no direct means of determining the scale zero, viz., the scale-reading for the position $\theta=0$. This, together with the value of the angle of torsion, is determined annually (in order to break the continuity of the photographic register as seldom as possible) by the following method.

The torsion-circle being set so that the magnet is nearly east and west, readings of the torsion vernier $\left(\mathrm{V}_{1}\right)$, of the scale $\left(\mathrm{S}_{1}\right)$, and of the time of vibration $\left(\mathrm{T}_{1}\right)$ in this position, are carefully taken. The magnet is then taken out and replaced in the reverse position, end to end, in its carrier; the magnetic couple being thus reversed, the vernier-reading on the torsion scale must be changed by twice the angle of torsion (which is approximately known beforehand) in order to maintain the magnet transverse to the meridian. A finer adjustment is made, if necessary, while the magnet is in position. Corresponding readings are taken, of vernier $\left(V_{2}\right)$, scale $\left(S_{2}\right)$, and time of vibration $\left(\mathrm{T}_{2}\right)$. Lastly, the magnet is replaced in its original position, in. which it remains (in general) until the following year's torsion observations. Again the three readings, $\mathrm{V}_{3}, \mathrm{~S}_{3}, \mathrm{~T}_{3}$, are taken.

Then for the angle of torsion we have

$$
\phi=\frac{1}{4}\left(2 \mathrm{~V}_{2}-\mathrm{V}_{1}-\mathrm{V}_{3}\right)+\frac{1}{2} k_{1}\left(\mathrm{~S}_{1}+\mathrm{S}_{2}-2 \mathrm{~S}_{3}\right),
$$

while the scale zero S_{0} is given by the formula

$$
S_{0}=\frac{1}{4}\left(\mathrm{~S}_{1}+\mathrm{S}_{3}+2 \mathrm{~S}_{2}\right)+\frac{1}{k} \frac{\mathrm{~T}_{1}+\mathrm{T}_{3}-2 \mathrm{~T}_{2}}{\mathrm{~T}_{1}+\mathrm{T}_{3}+2 \mathrm{~T}_{2}} \cot \phi
$$

Two determinations of ϕ and S_{0} are made by taking two sets of observations of S, V, and T in each position of the magnet, with slightly different vernier readings.

The above method of determining the scale value was not used before the beginning of 1911, but the formulæ could be applied to the observations taken in connection with the method formerly used (a description of the latter is given in the volumes for 1908 and earlier years). A table of corrections (calculated from these formulæ) appeared in the Introduction to the Magnetical Observations for 1909 (see p. xv.), giving the percentage error in the scale values adopted for the horizontal force magnetographs in the years 1883-1909.

From experiments on 1910 January 31, it was found that the angle of torsion was $41^{\circ} 37^{\prime}$, and the scale zero was 53.28 ; from similar experiments on 1910 December 30, the corresponding values found were $41^{\circ} 56^{\prime}$ and $56 \cdot 79$. The mean scale reading during the year 1910 was about 52 . The adopted values of ϕ and θ for the reduction of the observations for 1910 February to December are $41^{\circ} 44^{\prime}$ and 0 . Thus the value of cot $\phi+\tan \theta$ is 1.12106 .*

Since the distance between the concave mirror carried by the magnet and the surface of the cylinder is 136.8 inches, the length on the cylinder which corresponds to a change of 0.01 of the whole horizontal force is $2 \times 0.01 \times 136.8 \div(\cot \phi+\tan \theta)=$ $2^{\text {in. }} \cdot 441$ during the year 1910 February to December; the cardboard scale used for measuring the curves is constructed with this as unit.

As the indications of horizontal force are in a slight degree affected by the small changes to which the Magnet Basement is subject, a thermometer, the bulb of which reaches considerably below the attached scale, is placed in a nearly upright position on the outer magnet box, with its bulb projecting well into the interior of the inner box. Readings of this thermometer are usually taken at $9^{\mathrm{h}}, 10^{\mathrm{h}}, 11^{\mathrm{h}}, 12^{\mathrm{h}}, 13^{\mathrm{h}}, 14^{\mathrm{h}}, 15^{\mathrm{h}}, 16^{\mathrm{h}}$, and 21^{h}. An index correction of $-0^{\circ} \cdot 3$ has been applied to all the readings.

The temperature coefficient of the magnet was determined by artificially heating the Magnet Basement to different temperatures, and observing the change of position of the magnet produced thereby. Such experiments were made in the years 1868, 1885, and 1886 (see previous volumes for details). A discussion of the observations taken in 1885 and 1886 shows that the correction for reduction to temperature 32° (expressed in terms of the whole horizontal force) is $(+-32) \times 0 \cdot 0000936+(+-32)^{2} \times \cdot 000002074$, the temperature \pm being in degrees Fahrenheit. The decrease of horizontal force for

* During January, pending alteration of the mounting, the magnet was set with torsion circle reading 140° instead of 149°. Allowing for the correction when $\theta=9^{\circ}$, the value of $\cot \phi+\tan \theta$ was 0.96926 and the unit of the paper scale $2^{\text {in. }} 823$.

Exii Introduction to Greenwich Magnetical Observations, 1910.
an increase of 1° of temperature would thus be 00021 at $60^{\circ}, 00023$ at 65°, and .00025 at 70°.

The eye readings of the position of the magnet, in conjunction with the photographic record of the position at the same times, serve as a check on the constancy of the recording arrangements.

Vertical Force Variometer.-The magnet used in this instrument is $1 \frac{1}{2}$ feet long, and lozenge-shaped, being broad at the centre and pointed at the ends. The steel knife-edge, which is 8 inches long, and passes through an aperture in the magnet, rests on two agate planes. The magnet is placed unsymmetrically on the knife edge, being nearer to its southern end. The axis of vibration was originally in the magnetic meridian, but is now a few degrees distant, on account of the secular change of declination.

Two steel screw stalks, carrying adjustable screw weights, are attached to the magnet, one being vertical in order to vary the sensitiveness, the other horizontal in order to adjust the balance of the magnet, which should rest in a nearly horizontal position. Formerly a copper damper encircled the magnet, but, as it was found to be unnecessary, it has not been used since 1902. The magnet and supporting frame are enclosed in a wooden box with suitable glass-covered apertures. The temperature within the box is indicated by a thermometer, the bulb of which projects well into the interior of the box.

The photographic arrangements are generally similar to those already described in connection with the declination and horizontal force variometers. The cylinder carrying the photographic sheet is in this case vertical, and also receives the record of the variations of barometric pressure. The time scale is the same as for the other magnetic registers.

The scale coefficient of the instrument is determined by the method of vibrations. When the magnet is approximately horizontal, and transverse to the magnetic meridian, the variation of the vertical force, in terms of the whole vertical force, which will produce a small angular motion θ (measured in radians) $=\operatorname{cotan} \operatorname{dip} \times\left(\frac{T^{1}}{T}\right)^{2} \times \theta$; T and T^{1} are the times of vibration of the magnet in the vertical and horizontal planes respectively.

Observations of T are made once a week by means of the telescope and scale provided for eye readings of the position of the magnet. The mean of 54 observations made during the year gives the value $16^{\mathrm{s}} 891$.

The time of vibration in the horizontal plane $\left(T^{1}\right)$ is determined once every three years, as the observation requires the removal of the magnet from its box. The magnet, with all its attached parts, is suspended from a tripod, with its broad side horizontal. The arc of vibration is kept small. Observations on 1908 December 31 gave for the time of vibration in the horizontal plane 16.891 . This value has been adopted for the year 1910.

Since the distance between the concave mirror of the magnet and the surface of the cylinder is 100.2 inches, the length on the cylinder, in inches, which corresponds to a change of 0.01 part of the whole vertical force $=2 \times 100.2 \times \tan$ dip \times $\left(\frac{T}{T^{1}}\right)^{2} \times 0.01$. Taking $T=16^{\mathrm{s} .891,} T^{M}=16^{\mathrm{s} .891}$, and $\operatorname{dip}=66^{\circ} 52^{\prime} 49^{\prime \prime}$, this length is found to be 4.694 inches. The cardboard scale, which is used for measuring the curves for the year, is constructed with this as unit.

The eye readings, which are taken at $9 \frac{1}{2} \mathrm{~h}, 12 \frac{1}{2}$ h, $15 \frac{1}{2} \mathrm{~h}$, and $20 \frac{1}{2} \mathrm{~h}$, afford a check on the recording arrangements, when compared with the photographic record of the position of the magnet at the same times.

Readings of the temperature within the box are taken at $9^{\mathrm{h}}, 10^{\mathrm{h}}, 11^{\mathrm{h}}, 12^{\mathrm{h}}, 13^{\mathrm{h}}, 14^{\mathrm{h}}$, $15^{\mathrm{h}}, 16^{\mathrm{h}}$, and 21^{h}. Experiments made in 1885 and 1886 (details of which are given in the Introduction for 1886) showed that, through the range of temperature to which the magnet is normally exposed, the apparent increase of vertical force for 1° rise of temperature (Fahrenheit) is uniformly 0.000212 . No term depending on the square of the temperature is necessary in this case.

§ 5. Magnetic Reductions.

The results given in the Magnetic Section refer to the civil day, commencing at midnight.

Before the photographic records of magnetic declination, horizontal force, and vertical force are discussed, they are divided into two groups-one including all days on which the traces show no particular disturbance, and which, therefore, are suitable for the determination of diurnal inequality; the other comprising days of unusual and violent disturbance, when the traces are so irregular that it appears impossible to treat them except by the exhibition of every motion of each magnet through the day. Following the principle of separation hitherto adopted, there are no days in the year 1910 which are classed as days of great disturbance. Days of lesser disturbance are March 27-28, 28-29, June 20, August 22, September 29, December 28-29. When two days are mentioned, it is to be understood that the reference is usually to one set of photo-

Exiv Introduction to Greenwich Magnetical Observations, 1910.

graphic sheets extending from noon to noon, and including the last half and the first half respectively of two consecutive civil days.

Through each photographic trace, including those on days of lesser disturbance, a pencil line was drawn, representing the general form of the curve without its petty irregularities. The ordinates of these pencil curves were then measured, with the proper pasteboard scales, at every hour; and from the tables of these measures, for each calendar month, are obtained the mean monthly values for each hour of the day, and the mean daily value of the element for each day of the month. The daily mean is taken from the 24 ordinates 0^{h} to 23^{h}. Tables I. and II. contain the results for declination, Tables III. to VI. those for horizontal force, with corresponding tables of temperature, and Tables VII. to X. those for vertical force, with corresponding tables of temperature. In the formation of diurnal inequalities it is unimportant whether a day omitted be a complete civil day, or the parts of two successive civil days making together a whole day, although in the latter case the results are not available for daily values. No days were omitted on account of great disturbance in the formation of these Tables, but from other causes there are omitted in Tables I. and II. for declination, January 12 and 13 and March 16 and 17, in Tables ILI. to VI. for horizontal force, January 1 to 7, 13 and 31, March 16 and 17 and December 30 and 31, and in Tables VII. to X. for vertical force, Lecember 30 and 31.

Table XI. gives the collected monthly values for declination, horizontal force, and vertical force, and Table XII. the mean diurnal inequalities for the year.

By means of two stoves placed in the Basement, the temperature has been kept nearly constant throughout the year, the endeavour being to keep it as near to 67° as possible. Since 1883 the results in Tables III., V., VII., and IX. have been given as corrected for temperature, as well as without this correction. In Tables XI. and XII., only results corrected for temperature are given. The corrections applied (which are mentioned in the description of each instrument) are founded on the daily and hourly values of temperature given in Tables IV., VI., VIII., and X.

In regard to the formation of the tables of temperature, the hourly readings of the Richard Thermograph were combined so as to give the mean daily values for each day of the month, and the mean monthly ralues for each hour of the day. To adapt these to represent the temperature within the horizontal and vertical force magnet boxes respectively, the monthly means of the thermograph-readings at $9^{\mathrm{h}}, 10^{\mathrm{h}}$, $11^{\mathrm{h}}, 12^{\mathrm{h}}, 13^{\mathrm{h}}, 14^{\mathrm{h}}, 15^{\mathrm{h}}, 16^{\mathrm{h}}$, and 21^{h} were compared with the corresponding means of the eye readings of the thermometers whose bulbs are within the respective magnet boxes, giving corrections to the thermograph-readings at these hours, which were very
accordant, and from which, by interpolation, corrections were obtained for the remaining hours. The nine daily observations gave also the means of reducing the daily thermograph values to the temperature of the interior of the respective magnet boxes. The results are given in Tables IV., VI., VIII., and X.

In order to economise space, the daily values, as exhibited in Tables III. and VII., both uncorrected and corrected, have been diminished by constants. The division \Longrightarrow in these Tables and in Table XI. indicates that the instrument has been disturbed for experiment or adjustment, or that for some reason the continuity of the values has been broken, the constants deducted being different before and after each break. In the interval between two breaks the values of u and c are each comparable throughout, remarking only that in certain cases it is to be understood that the values are to be taken 1000 greater or less for comparison with adjacent values. See, for example, c in Table III. on May 6, which should be taken as 1005 for comparison with the adjacent values, and similarly in other cases. The excess of the value of c above that of u on any day (supposing c, when the smaller value, to be increased by 1000) shows the correction for temperature that has been actually applied. In Tables II., V., IX., and XII. the separate hourly values of the different elements have been simply diminished by the smallest hourly value.

The variations of declination are given in the sexagesimal division of the circle, and those of horizontal and vertical force in terms of 00001 of the whole horizontal and vertical forces respectively taken as units. In Tables XI. and XII. they have been also expressed in C.G.S. measure.

Table XIII. exhibits the diurnal range of declination and horizontal force on each separate day, as determined from the 24 hourly ordinates of each element measured from the photographic register (as explained on page E xiv), and the monthly means of these numbers, the results for horizontal force being corrected for temperature. The first portion of Table XIV. contains the difference between the greatest and least hourly mean values in each month, for declination, horizontal force, and vertical force, as extracted from Table II. and columns c of Tables V. and IX. In the second portion of the table there are given for each month the numerical sums of the deviations of the 24 hourly values from the mean, taken without regard to sign.

The magnetic diurnal inequalities of declination, horizontal force, and vertical force, for each month and for the year, as given in Tables II., V., and IX., have been treated by the method of harmonic analysis, and the results are given in Tables XV. and XVI.

Exvi Introduction to Greenwich Magnetical Observations, 1910.

The values of a_{5} and b_{5} for the diurnal inequalities for the year were also calculated, but could not be conveniently included in Table XV. They are as follows :-

1910.	a_{5}.	b_{5}.
Declination	-6.07	$0 \cdot 00$
Horizontal Force		-0.7
Vertical Force ..	$+0.7$	-0.5

In order to give some indication of the accuracy with which the results of observation are represented by the harmonic formula, the sums of squares of residuals remaining after the introduction of m and of each successive pair of terms of the expression on page E 12, corresponding to the single terms of the expressions on page E 13, have been calculated for the mean diurnal inequalities for the year (columns 1, 2, and 3 of Table XII.). The respective sums of squares of residuals are as follows :-

SUMS OF SQUARES OF RESIDUALS OF DIURNAL INEQUALITIES.

			Declination.	Horizontal Force.	Vertical Force.
Sums of Squares of Observed Values (Table XII.) \qquad Sums of Squares of Residuals after the introduction of m \qquad			201:62	299697*	$19273^{\circ} 0$
			$100 \cdot 15$	51732.0	$4502 \cdot 1$
"	"	a_{1} and b_{1}	37.08	11129.6	1789.1
"	"	α_{2} and b_{2}	$5 \cdot 70$	2494.7	2954
$"$	$"$	a_{3} and b_{3}	0.85	527.6	$40 \cdot 1$
"	$"$	a_{4} and b_{4}	$0 \cdot 10$	42.4	13.4
$"$	"	a_{5} and b_{5}	0.04	15.2	5.0

The unit in the case of horizontal and vertical force being 00001 of the whole horizontal and vertical forces respectively, it thus appears that there would be no advantage in carrying the approximation (Table XV.) beyond the determination of a_{4}, b_{4}.

As regards Magnetic Dip, the result of each complete observation of dip with each of the needles in ordinary use, is given in Table XVII.; and in Table XVIII., the concluded monthly and yearly values for each needle.

The results of the observations for Absolute Measure of Horizontal Force contained in Table XIX. require no special remark, the method of reduction and all necessary explanation having been given with the description of the instrument employed. The observed result in each month has been also given as reduced to the mean value for the month, by application of the difference between the horizontal force ordinate at the time of observation and the mean value for the month, as obtained from the photographic register.

In order to facilitate the comparison of the diurnal inequalities of magnetism at the different British and other magnetic observatories, an arrangement has been made with the Sub-Committee of the Kew Committee of the Royal Society, by which five quiet days are to be selected at Greenwich in each month of every year for adoption at all these observatories for determination of the monthly diurnal inequalities of declination, horizontal force, and vertical force, thus providing for further discussion results which should be strictly comparable. The particular days selected are given on page E18, and the results found for Greenwich are contained in Tables XX., XXI., and XXII., which it is interesting to compare with the values found from the records of all days, as given in Tables II., V., IX., and XII.

Reduced copies of the magnetographs for certain disturbed days (mentioned on p. E xiii) have been printed in each volume since 1882. The list of these days since the year 1889 has been selected in concert with M. Mascart, or his successor M. Angot, so that the two Observatories of Val Joyeux (formerly of the Parc Saint Maur) and Greenwich should publish the magnetic registers for the same days of disturbance with a view to the comparison of the results. It is proposed to follow this plan in future years, and if other magnetic observatories should eventually join in the scheme for concerted action, in regard to the publication of their registers, the discussion of magnetic perturbations would be much facilitated.

The plates are preceded by a brief description of all other significant magnetic motions (superposed on the ordinary diurnal movement) recorded throughout the year. These, in combination with the plates, give very complete information on magnetic disturbances during the year 1910, affording thereby, it is hoped, facilities for making comparison with solar phenomena.

In regard to the plates, it may be remarked that on each day three distinct registers are usually given, viz. : declination, horizontal force, and vertical force; all necessary information for proper understanding of the plates being added in the notes on page (E 36).

An additional plate (IV.) exhibits the registers of declination, horizontal force, Grebnwich Magnetioal and Meteorological Observations, 1910.
and vertical force on four quiet days, which may be taken as types of the ordinary diurnal movement at four seasons of the year. These are given for the civil day as exhibiting more clearly the character of the diurnal movement.

The indications of horizontal and vertical force are given precisely as registered; they are therefore affected, slightly as compared with the amount of motion on disturbed days, by the small recorded changes of temperature of the magnets. The recorded hourly temperatures being inserted on the plates, reference to the temperaturecorrection of the magnets, given at pages Exi to Exiii, will show the effect produced. Briefly, an increase of about $4 \frac{1}{2}^{\circ}$ of temperature throws the horizontal force curve upward by 0.001 of the whole horizontal force; an increase of about 5° of temperature throws the vertical force curve downward by 0.001 of the whole vertical force.

The original photographs have been reduced in the proportion of 20 to 11 on the plates, and the corresponding scale values are :-

The scales actually attached to the plates are, however, so arranged as to correspond with the tables of the magnetic section-that is to say, the units for horizontal force and vertical force are 00001 of the whole horizontal and vertical forces respectively, the numbers being in some cases increased by 1000 to avoid negative quantities. At the foot of each plate equivalent scales, in C.G.S. measure, are given for each of the magnetic registers.

Since the preceding scale values are not immediately comparable for the different elements, it therefore becomes desirable to refer them all to the same unit, say 0.01 of the horizontal force.

Now, the transverse force represented by a variation of 1° of Declination $=0175$ of Horizontal Force,
and Vertical Force $=$ Horizontal Force $\times \tan \operatorname{dip}$ [adopted dip $=66^{\circ} .52^{\prime} .49^{\prime \prime}$]
$=$ Horizontal Force $\times 2.3422$;
whence we have the following equivalent scale values for the different elements :-

${ }_{37 \cdot 4}^{\text {mm. }}$ on the	Declination	Curve corresponds to 0.01 of Horizontal Force.				
34.1 ,	Herizontal Force		,"		,	,,
$28 \cdot 0$,	Vertical Force	,		"	"	"

 which represent the lengths on the respective three curves equivalent to 0.01 C.G.S. unit.

The subjoined table gives the values of Magnetic Elements determined at the Royal Observatory, Greenwich :-

Year.	Declination West.	Horizontal Force, C.G.S. Unit.	Dip. \dagger	Year.	Declination West.	Horizontal Force, C.G.S. Unit.	Dip. \dagger
1841	$23.16 \cdot{ }^{\circ}$	\ldots	-.. ${ }^{\prime}$	1876	19.9.8. ${ }^{\circ}$	$0 \cdot 1797$	67.41 1 0
1842	23.14 .6	\ldots	\ldots	1877	$18.57 \cdot 2$	$0 \cdot 1799$	67.397
1843	23.1177		69. $0 \cdot 6$	1878	$18.49{ }^{\circ} 3$	0.1801	$67.38 \cdot 2$
1844	$23.15 \cdot 3$	\ldots	69. $0 \cdot 3$	1879	$18.40 \cdot 5$	0.1803	67.37°
1845	$22.56 \cdot 7$	\ldots	$68.57 \cdot 5$	1880	18.32 .6	0.1804	67.35%
1846	22.49 .6	0.1731	68.58 .1	1881	$18.27{ }^{1}$	0.1805	67.34 .7
1847	22.51.3	0.1736	68.59°	1882	$18.22 \cdot 3$	0.1804	67.34 .2
1848	22.51.8	0.1731	68.54.7	1883	18.15%	0.1810	$67.31 \cdot 7$
1849	22.37.8	$0 \cdot 1733$	$68.51 \cdot 3$	1884	18. $7^{\circ} 6$	0.1812	67.29 .7
1850	22.23 .5	0.1738	68.46 .9	1885	18. $1 \cdot 7$	0.1816	$67.28 \cdot 0$
1851	22.18.3	0.1744	$68.40{ }^{\circ} 4$	1886	17.54.5	$0 \cdot 1816$	67.27 I
1852	22.179	$0 \cdot 1745$	$68.42 \cdot 7$	1887	17.49 ${ }^{\text {I }}$	-1818	$67.26 \cdot 6$
1853	22.10 .1	$0 \cdot 1748$	68.44* 6	1888	17.40 \%	$0 \cdot 1820$	$67.25 \cdot 6$
1854	22. 0.8	$0 \cdot 1749$	68.477	1889	17.349	0.1821	67.24 .3
1855	21.48 .4	$0 \cdot 1756$	68.44 .6	1890	17.28 .6	0.1823	67.23 .0
1856	21.43 .5	$0 \cdot 1759$	68.43 .5	1891	17.23 .4	$0 \cdot 1825$	67.21 .5
1857	21.35%	0.1769	68.31×1	1892	17.174	$0 \cdot 1827$	$67.20{ }^{\circ}$
1858	$21.30 \cdot 3$	0.1762	$68.28 \cdot 3$	1893	17.11 .4	$0 \cdot 1829$	67.17 .9
1859	21.23 .5	0.1761	68.26 .9	1894	17. $4^{.6}$	0.1829	67.17 .4
1860	21.14 .3	...	$68.30 \cdot 1$	1895	16.57 .4	$0 \cdot 1832$	$67.16 .1{ }^{*}$
1861	21. $5 \cdot 5$	$0 \cdot 1773$	68.24 .6	1896	16.517^{*}	0.1833^{*}	$67.15 \cdot{ }^{*}$
	21.55	$0 \cdot 1757$	68.15 .8	1897	16.45***	-.1836	67.135^{*}
1862	20.52.6	0.1761	68. $9 \cdot 6$	1898	16.39 ${ }^{*}$ *	$0 \cdot 1838$	67.12.1
1863	20.45*9	0.1763	68. $7 \cdot 0$	1899	$16.34{ }^{\circ}$	0.1842	67.10 .5
1864	...	0.1765	68. $4 \cdot 1$	1900	16.29°	$0 \cdot 1844$	67. $8 \cdot 8$
1865	20.33.9	0.1765	68. $2 \cdot 7$	1901	16.26 .0	$0 \cdot 1848$	$67.6 \cdot 4$
1866	$20.28{ }^{\circ}$	$0 \cdot 1771$	68. 1•3	1902	16.22 .8	0.1850	67. $3 \cdot 8$
1867	20.20.5	0.1776	$67.57 \cdot 2$	1903	16.19.1	0.1850	67. 1.2
1868	$20.13 \cdot 1$	$0 \cdot 1777$	$67.56 \cdot 5$	1904	16.15.0	0.1852	$66.57 \cdot 6$
1859	20. $4^{1} 1$	0.1780	67.54 .8	1905	16. $9 \cdot 9$	0.1852	$66.56 \cdot 3$
1870	$19.53{ }^{\circ}$	0.1782	67.52 .5	1906	16. 3.6	$0 \cdot 1852$	66.55.6
1871	19.41 .9	0.1785	$67.50 \cdot 3$	1907	15.59 .8	-1853	$66.56 \cdot 2$
1872	19.36 .8	0.1787	$67 \cdot 47 \cdot 8$	1908	15.53 .5	0.1853	$66.56 \cdot 3$
1873	19.33 .4	$0 \cdot 1791$	$67.45 \cdot 8$	1909	15.47 .6	-11853	66.54 .1
1874	19.28 .9	$0 \cdot 1795$	$67 \cdot 43 \cdot 6$	1910	15.41 .2	$0 \cdot 1853$	66.52.8
1875	19.21 .2	0.1795	67.42 .4				

* Corrected for the effect of the iron in the new buildings (see p. E ii).
+ These values of the dip differ slightly in some instances from those given in previous volumes, on account of the correction described on p . E v.

Exx Introduction to Greenwich Meteorological Observations, 1910.

In 1861 the new Unifilar Apparatus for absolute Horizontal Force and the Airy DipCircle were introduced, both sets of apparatus being used in that year. In 1864 the excavation of the Magnetic Basement caused the suspension of complete Declination Observations.

Slight interruptions in the traces on the plates are due to various causes. In the originals there are breaks at each hour for time scale, so slight, however, that in the copies the traces could usually be made continuous without fear of error: in a few cases, however, this could not be done. Further, to check the numeration of hours, the observer interrupts the register at definite times for about five minutes, usually at or near $9^{\mathrm{h}} 30^{\mathrm{m}}, 12^{\mathrm{h}} 30^{\mathrm{m}}$, and $20^{\mathrm{h}} 30^{\mathrm{m}}$ Greenwich civil time.

The original photographic records were first traced on thin paper, the separate records on each day being arranged one under another on the same sheet, and great attention being paid to accuracy as regards the scale of time. Each sheet containing the records for one or more days was then reduced by photo-lithography, in the proportion of 20 to 11 , to bring it to a convenient size for insertion in the printed volume.

§ 6. Meteorological Instruments.

Standard Barometer.-The standard barometer, mounted in 1840 on the southern wall of the western arm of the Upper Magnet Room, is Newman No. 64. Its tube is $0^{\text {in }} 565$ in diameter, and the depression of the mercury due to capillary action is $0^{\text {in. }} 002$, but no correction is applied on this account. The cistern is of glass, and the graduated scale and attached rod are of brass; at its lower end the rod terminates in a point of ivory, which in observation is made just to meet the reflected image of the point as seen in the mercury. The scale is divided to $0^{\text {in }} 005$, sub-divided by vernier to $0^{\text {in }} 002$.

The readings of this barometer, until 1866 August 20, are considered to be coincident with those of the Royal Society's flint-glass standard barometer. It then became necessary to remove the sliding rod for repair of its slow motion screw, which was completed on August 30. Before the removal of the rod the barometer had been compared with three other barometers, one of which, during repair of the rod, was used for the daily readings. After restoration of the rod, a comparison was again made with the same three barometers, from which it appeared that the readings of the standard, in its new state, required a correction of $-0^{\text {in. }} 0006$, all three auxiliary barometers giving accordant results. This correction has been applied to every observation since 1866 August 30 .

An elaborate comparison of the standard barometers of the Greenwich and Kew Observatories, made in the spring of the year 1877, under the direction of the Kew Committee, by Mr. Whipple, showed that the difference between the two barometers (after applying to the Greenwich barometer-readings the correction - $0^{\text {in }} \cdot 006$) did not exceed $0^{\text {in. }} 001$. (Proceedings of the Royal Society, vol. xxvii. page 76.)

The height of the barometer cistern above the mean level of the sea is 159 feet, being $5^{\text {tit }} \cdot 2^{\text {in. }}$ above Mr. Lloyd's reference mark in Bradley's Transit room adjoining the present Transit-circle room. (Philosophical Transactions, 1831.)

The barometer is read at $9^{\mathrm{h}}, 12^{\mathrm{h}}$ (noon), $15^{\mathrm{h}}, 21^{\mathrm{h}}$ (civil reckoning) every day. Each reading is corrected by application of the index-correction above mentioned, and reduced to the temperature 32° by means of Table II. of the "Report of the Committee of Physics" of the Royal Society. The readings thus found are used to determine the value of the instrumental base line on the photographic record.

Photographic Barometer.--The barometric record is made on the same cylinder as is used for magnetic vertical force. A siphon barometer fixed to the northern wall of the Magnet Basement is employed, the bore of the upper and lower extremities of the tube being about 1.1 inch, and that of the intermediate portion 0.3 inch. A metallic plunger, floating on the mercury in the shorter arm of the siphon, is partly supported by a counterpoise acting on a light lever, leaving a definite part of its weight to be supported by the mercury. The lever carries at its other end a vertical plate of aluminium, having a small horizontal slit, whose distance from the fulcrum is about eight times that of the point of connexion with the float, and whose vertical movement is therefore about four times that of the ordinary barometric column. The light of a gas lamp, passing through this slit and falling on a cylindrical lens, forms a spot of light on the paper. The barometer can, by screw action, be raised or lowered so as to keep the photographic trace in a convenient part of the sheet. A base line is traced on the sheet, and the record is interrupted at each hour by the clock, and occasionally by the observer, in the same way as for the magnetic registers. The length of the time scale is also the same.

The barometric scale is determined by experimentally comparing the measured movement on the paper with the observed movement of the standard barometer; one inch of barometric movement is thus found $=4^{\text {in }} \cdot 16$ on the paper. Ordinates measured for the times of observation of the standard barometer, combined with the corrected readings of the standard barometer, give apparent values of the base line, from which mean values for each day are formed; these are written on the sheets and new base lines drawn, from which the hourly ordinates (see page Exxxiii) are

Exxii Introduction to Greenwich Mafnetical Observations, 1910.

measured as for the magnetic registers. As the diurnal change of temperature in the Basement is very small, no appreciable differential effect is produced on the photographic register by the expansion of the column of mercury.

Dry and Wet Bulb Thermometers.-The Standard dry and wet bulb thermometers and maximum and minimum self-registering thermometers, both dry and wet, are mounted on a revolving frame planned by Sir G. B. Airy. A vertical axis, fixed in the ground, carries the frame, which consists of a horizontal board as base, of a vertical board projecting upwards from it and connected with one edge of the horizontal board, and of two parallel inclined boards (separated about 3 inches) connected at the top with the vertical board and at the bottom with the other edge of the horizontal board: the outer inclined board is covered with zinc, and the air passes freely between all the boards. The dry and wet bulb thermometers are mounted near the centre of the vertical board, with their bulbs about 4 feet from the ground; the maximum and minimum thermometers for air temperature are placed towards one side of the vertical board, and those for evaporation temperature towards the other side, with their bulbs at about the same level as those of the dry and wet bulb thermometers. A small roof projecting from the frame protects the thermometers from rain. The frame is turned in azimuth several times during the day (whether cloudy or clear), so as to keep the inclined side always towards the sun. In 1878 September a circular board, 3 feet in diameter, was fixed, below the frame, round the supporting post, at a height of 2 feet 6 inches above the ground, with the object of protecting the thermometers from radiation from the ground. In the summer of 1886 experiments were made on days of extreme heat, with the view of determining the effect of the circular board in this respect, an account of which will be found at the end of the Introduction to the volume for the year 1887. The effect of radiation with the circular board removed was found to be insensible.

On 1899 January 4 the thermometer stand was moved to the Magnetic Pavilion enclosure, where the thermometers are set up in an open position, about 40 feet southwest of the building.

The corrections to be applied to the thermometers in ordinary use are determined, usually once each year for the whole extent of scale actually employed, by observations at 32° in pounded ice and by comparison with the standard thermometer No. 515, kindly supplied to the Royal Observatory by the Kew Committee of the Royal Society.

The dry bulb thermometer used throughout the year was Negretti and Zambra, No. 45354. The correction $-0^{\circ} 4$ has been applied to the readings of this
thermometer. The wet bulb thermometer used throughout the year was Negretti and Zambra, No. 94737 . The correction $-0^{\circ} \cdot 2$ has been applied to the readings of this thermometer.

The self-registering thermometers for temperature of air and evaporation are all by Negretti and Zambra. The maximum thermometers are on Negretti and Zambra's principle, the minimum thermometers are of Rutherford's construction. The readings of Negretti and Zambra, No. 83760, for maximum temperature of the air, required no correction; to those of Negretti and Zambra, No. 38338, for minimum temperature of the air, a correction of $+0^{\circ} \cdot 1$ has been applied; to those of Negretti and Zambra, No. 102104, for maximum temperature of evaporation, a correction of $+0^{\circ} \cdot 1$ has been applied; and to those of Negretti and Zambra, No. 98508, for minimum temperature of evaporation, a correction of $+0^{\circ} \cdot 1$ has been applied.

The dry and wet bulb thermometers are read at $9^{\mathrm{h}}, 12^{\mathrm{h}}$ (noon), $15^{\mathrm{h}}, 21^{\mathrm{h}}$ (civil reckoning) every day. Readings of the maximum and minimum thermometers are taken at $9^{h}, 15^{h}$ and 21^{h} every day. Those of the dry and wet bulb thermometers are employed to correct the indications of the photographic dry and wet bulb thermometers.

In the year 1887, four thermometers-a dry-bulb and a wet-bulb, with maximum and minimum thermometers for air temperature-were mounted in a Stevenson screen, with double louvre-boarded sides, of the pattern adopted by the Royal Meteorological Society, which is fully described in the Quarterly Journal of the Society, vol. x. page 92 . The screen is planted in the Magnet ground 20 feet east-north-east of the photographic thermometers, and its internal dimensions are, length 18 inches, width 11 inches, and height 15 inches, the bulbs of the thermometers placed in it being at a height of about 4 feet above the ground. The dry-bulb thermometer is Hicks No. 262495, to the readings of which a correction of $-0^{\circ} \cdot 1$ has been applied. The wet-bulb is Hicks No. 268525, and the maximum thermometer is Negretti and Zambra, No. 85059, neither of which required correction. To the readings of the minimum thermometer, Negretti and Zambra, No. 68873, a correction of $+0^{\circ} \cdot 1$ has been applied.

Experiments were made in the summer of the year 1887 on days of extreme heat, to determine whether, with the door of the screen open, the thermometers were in any way influenced by radiation from external objects, an account of which will be found

Exxiv Introduction to Greenwich Meteorological Observations, 1910.
at the end of the Introduction to the volume for 1887 . The effect of radiation with the door of the screen open was found to be insensible.

On 1900 March 31, an additional Stevenson screen, similar to the screen already mounted in the Magnet ground, was erected in the Magnetic Pavilion enclosure, 15 feet north-east of the open stand. The dry and wet-bulb thermometers mounted in this screen are Negretti and Zambra, Nos. 94713 and 94714 , of which the former required no correction to its readings. To the readings of the maximum thermometer, Negretti and Zambra, No. 94859, a correction of $-0^{\circ} \cdot 4$ has been applied, and to those of the minimum thermometer and the wet-bulb thermometer, Negretti and Zambra, Nos. 85080 and 94714 , a correction of $+0^{\circ} 1$ has been applied.

Photographic Dry-Bulb and Wet-Bulb Thermometers.-The apparatus which has been in use since 1887 was designed by Sir W. H. M. Christie, and since 1899 has stool in its present position in the Magnet Ground. It is placed in a shed, 8 feet square, standing upon posts about 8 feet high, and open to the north. The roof slopes towards the south, and there are double protecting boards on the eastern, southern, and western sides; the apparatus is thus screened from the direct rays of the sun, without impeding the circulation of the air. The cylinder which receives the photographic register is $11 \frac{1}{2}$ inches long, and $14 \frac{1}{2}$ inches in circumference, and revolves once in 26 hours. The two traces fall on the same part of the cylinder, as regards time scale; a long air-bubble in the wet-bulb thermometer column gives the means of registering the indications of the wet bulb (as well as of such degrees and decades of its scale as fall within the bubble), just below the trace of the dry-bulb thermometer, without any interference of the two records, an arrangement which admits of the time scale being made equal to that of all the other registers. The stems of the thermometers are placed close together, each being covered by a vertical metal plate having a fine vertical slit, so that light passes through only at such parts of the bore of the tube as do not contain mercury. Two gas lamps, each at a distance of 21 inches, are placed at such an angle that the light from each, after passing through its corresponding slit and thermometer tube, falls on the photographic paper in one and the same vertical line. Degree lines etched upon the thermometer stems, and painted, interrupt the light sufficiently to produce a clear and sharp indication on the photographic sheet, the line at each tenth degree being thicker than the others, as well as those at $32^{\circ}, 52^{\circ}, 72^{\circ}, \& c$. The length of scale is from 0° to 120° for each thermometer, the length of 1° being about 0.1 inch, and the air-bubble in the wet-bulb thermometer is about 12° in length, so that it will always include one of the ten-degree lines. The bulbs, which are 2 inches long and of about $\frac{1}{2}$ an inch in internal bore, are separated horizontally by 5 inches, the tubes of the thermometers having a double bend
above the bulbs, which are placed about 4 feet above the ground. The thermometers are carried by a vertical frame with independent vertical adjustment for each thermometer, so that the register in summer or winter can be brought to a convenient part of the photographic sheet. The revolving cylinder is driven by a pendulum clock contained within the brass case covering the whole apparatus, excepting the thermometer bulbs which project below. It makes one revolution in 26 hours, and the time scale is the same as that for all the other registers. As the cylinder revolves, the light passing through the portion of the thermometer tubes not occupied by mercury imprints on the paper a broad band of photographic trace, corresponding to the drybulb register, whose breadth in the vertical direction varies with the height of the mercury in the tube, and a narrower band below, corresponding to the wet bulb. When these are developed, the traces are seen to be crossed by thin white lines, the horizontal lines corresponding to degrees, and the vertical lines to hours, the lower boundary of each trace indicating the thermometric record corresponding to the upper surface of the thermometric column.

The driving clock is made to interrupt the light for a short time at each hour, producing on the sheet the hour lines above mentioned; the observer also occasionally interrupts the register for a short time for proper identification of the hourly breaks.

The bulbs of the thermometers were at first completely protected from radiation by vertical or inclined boards fixed to the thermometer stand, two on the south side, two on the north side, one at the east end, one at the west end, and one below, but with proper spaces for free circulation of air. Experiments made in the summer of the year 1886, an account of which is given at the end of the Introduction for 1887, showed that the north and south boards were unnecessary, and the two south boards and one north board were in consequence removed before commencing regular work with the instrument at the beginning of the year 1887. The south boards were replaced during 1908 as a precaution against indirect effects from the gravel path to the south of the shed.

For a description of the apparatus formerly employed, reference may be made to the Introduction for 1887 and previous years. A comparison of the results given by the old and new apparatus will be found at the end of the Introduction to the year 1887.

Radiation Thermometers.-These thermometers are placed in the Magnetic Pavilion enclosure, in an open position about 50 feet south-west of the building. The thermometer for solar radiation is a self-registering mercurial maximum thermometer on Negretti and Zambra's principle, with its bulb blackened, and the thermometer Greenwict Magnetical and Meteorological Observations, 1910.

Exxvi Introduction to Greenwich Meteorological Observations, 1910.

enclosed in a glass sphere from which the air has been exhausted. The thermometer employed throughout the year was Negretti and Zambra, No. 99989. The thermometer for radiation to the sky is a self-registering spirit minimum thermometer of Rutherford's construction, by Horne and Thornthwaite, No. 3120. The thermometers are laid on short grass and freely exposed to the sky ; they require no correction for index-error.

Earth Thermometers.-These thermometers were made by Adie, of Edinburgh, under the superintendence of Professor J. D. Forbes. They are placed about 20 feet south of the Magnet House.

The thermometers are four in number, placed in one hole in the ground, the diameter of which in its upper half is 1 foot and in its lower half about 6 inches, each thermometer being attached in its whole length to a slender piece of wood. The thermometer No. 1 was dropped into the hole to such a depth that the centre of its bulb was 24 French feet ($25 \cdot 6$ English feet) below the surface; then dry sand was poured in till the hole was filled to nearly half its height. Then No. 2 was dropped in till the centre of its bulb was 12 French feet below the surface; Nos. 3 and 4 till the centres of their bulbs were respectively 6 and 3 French feet below the surface; and the hole was then completely filled with dry sand. The upper parts of the tubes carrying the scales were left projecting above the surface; No. 1 by 27.5 inches, No. 2 by 28.0 inches, No. 3 by 30.0 inches, and No. 4 by 32.0 inches. Of these lengths, $8.5,10.0,11.0$, and 14.5 inches respectively are in each case tube with narrow bore. The length of 1° on the scales is 1.9 inch, 1.1 inch, 0.9 inch, and 0.5 inch in each case respectively. The ranges of the scales are for No. $1,46^{\circ} \cdot 0$ to $55^{\circ} \cdot 5$; No. $2,43^{\circ} \cdot 0$ to $58^{\circ} \cdot 0$; No. $3,44^{\circ} \cdot 0$ to $62^{\circ} \cdot 0$; and for No. 4 , $36^{\circ} \cdot 9$ to $68^{\circ} \cdot 0$.

The bulbs of the thermometers are cylindrical, 10 or 12 inches long, and 2 or 3 inches in diameter. The bore of the principal part of each tube, from the bulb to the graduated scale, is very small; in that part to which the scale is attached it is larger ; the fluid in the tubes is alcohol tinged red; the scales are of opal glass.

The ranges of scale having in previous years been found insufficient, fluid has at times been removed from or added to the thermometers as necessary, corresponding alterations being made in the positions of the attached scales. Information in regard to these changes will be found in previous Introductions.

The parts of the tubes above the ground are protected by a small wooden hut fixed to the ground; the sides of the hut are perforated with numerous holes, and it has a double roof: in the north face is a plate of glass, through which the readings are
taken. Within the hut are two small thermometers-one, No. 5 , with bulb 1 inch in the ground ; another, No. 6, whose bulb is freely exposed in the centre of the hut.

These thermometers are read every day at noon, and the readings are given without correction. The index-errors of Nos. 1, 2, 3, and 4 are unknown; No. 6 appears to read too high by $0^{\circ} \cdot 4$, but no corrections have been applied.

Osler's Anemometer.-This self-registering anemometer, devised by A. Follett Osler, for continuous registration of the direction and pressure of the wind and of the amount of rain, is fixed above the north-western turret of the ancient part of the observatory. For the direction of the wind a large vane ($9^{\mathrm{ft} .} 2^{\mathrm{in}}$. in length), from which a vertical shaft proceeds down to the registering table within the turret, gives motion, by a pinion fixed at its lower end, to a rack-work carrying a pencil. A collar on the vane shaft bears upon anti-friction rollers running in a cup of oil, rendering the vane very sensitive to changes of direction in light winds. The pencil marks a paper fixed to a board moved horizontally and uniformly by a clock, in a direction transverse to that of the motion of the pencil. The paper carries lines corresponding to the positions of N., E., S., and W. of the vane, with transversal hour lines. The vane is 25 feet above the roof of the Octagon Room, 60 feet above the adjacent ground, and 215 feet above the mean level of the sea. A fixed mark on the north-eastern turret, in a known azimuth, as determined by celestial observation, is used for examining at any time the position of the direction plate over the registering table, to which reference is made by means of a direction pointer when adjusting a new sheet on the travelling board. The vane, which had been in use since the year 1841, began in the autumn of 1891 to show signs of weakness; it was taken down in December 1891 and thoroughly repaired. It was satisfactory to find that the anti-friction bearings of the vane, on which the sensitiveness of its motion depends, were in excellent condition, after having been continuously in action for 25 years.

For the pressure of the wind the construction is as follows:-At a distance of 2 feet below the vane there is placed a circular pressure plate (with its plane vertical) having an area of $1 \frac{1}{3}$ square feet, or 192 square inches, which, moving with the vane in azimuth, and being thereby kept directed towards the wind, acts against a combination of springs in such way that, with a light wind, slender springs are first brought into action, but, as the wind increases, stiffer springs come into play. For a detailed account of the arrangement adopted, the reader is referred to the Introduction for the year 1866. [Until 1866 the pressure plate was a square plate, 1 foot square, for which in that year a circular plate, having an area of 2 square feet, was substituted and employed until the spring of the year 1880, when the present circular plate, having an area of $1 \frac{1}{3}$ square feet, was introduced.] A short flexible

Exxviii Introduction to Greenwich Meteorological Observations, 1910.

snake chain, fixed to a cross bar in connexion with the pressure plate, and passing over a pulley in the upper part of the shaft, is attached to a brass chain (formerly a copper wire) running down the centre of the shaft to the registering table, just before reaching which the chain communicates with a short length of silk cord, which, led round a pulley, gives horizontal motion to the arm carrying the pressure pencil. The substitution, in the year 1882, of the flexible brass chain for the copper wire, has greatly increased the delicacy of movement of the pressure pencil, every small movement of the pressure plate being now registered. The scale for pressure, in lbs. on the square foot, is experimentally determined from time to time as appears necessary; the pressure pencil is brought to zero by a light spiral spring. During the year 1907 a new set of pressure springs was supplied by Messrs Simms. Advantage was taken of this opportunity to endeavour to simplify the determination of mean pressures by arranging that the scale should change only once, low pressures being represented on twice as large a scale as high ones, and adjusting screws and clamps were also introduced by which the strength could be varied so that the springs could be adjusted to scale, instead of a new scale being determined from time to time.

Whilst the action of the pressure apparatus has been satisfactory for moderate winds, it is believed that the record of occasional very large pressures in years preceding 1882 was due principally to irregular action, in excessive gusts, of the connecting copper wire, but the brass chain being always in tension, the movements of the recording pencil have since been in complete sympathy with those of the pressure plate, and in this condition of the apparatus-that is, since the year 1882-few pressures greater than 30 lbs. have been recorded.

A self-registering rain gauge of peculiar construction forms part of the apparatus: this is described under the heading " Rain Gauges."

A new sheet of paper is applied to the instrument every day at noon. The scale of time is ordinarily the same as that of the magnetic registers, but by means of a special gearing applied to the clock by Mr. Kullberg in 1894 the table carrying the record can either be driven at the usual rate, or 24 times as fast, in order to give a largely increased time scale for the register of wind pressure during gales, the ordinary sheet thus giving a register for 1 hour instead of 24 .

Robinson's Anemometer.--This instrument, made by Mr. Browning, is constructed on the principle described by Dr. Robinson in the Transactions of the Royal Irish Academy, vol. xxii., for registration of the horizontal movement of the air, and is mounted above the small building on the roof of the Octagon Room. It
was brought into use in 1866 October. The motion is given by the pressure of the wind on four hemispherical cups, each 5 inches in diameter, the centre of each cup being 15 inches distant from the vertical axis of rotation. The foot of the axis is a hollow flat cone bearing upon a sharp cone, which rises up from the base of a cup of oil. An endless screw acts on a train of wheels furnished with indices for reading off the amount of motion of the air in miles, and a pinion on the axis of one of the wheels draws upwards a rack, to which is attached a rod passing down to the pencil which marks the paper placed on the vertical revolving cylinder in the chamber below. A motion of the pencil upwards through a space of 1 inch represents horizontal motion of the air through 100 miles. The revolving hemispherical cups are 21 feet above the roof of the Octagon Room, 56 feet above the adjacent ground, and 211 feet above the mean level of the sea.

The cylinder is driven by a clock in the usual way, and makes one revolution in 24 hours. A new sheet of paper is applied every day at noon. The scale of time is the same as that of the magnetic registers.

In this and preceding volumes the values of wind velocity V given in the tables are three times the actual velocity v of the cups. From some tests of the Browning instrument, made by Mr. W. H. Dines at Hersham in 1889, on his whirling machine, it appears that the relation between V and v is more correctly given by

$$
\mathrm{V}=4 \cdot 0+2 \cdot 0 v
$$

The instrument thus fails to record wind velocities less than 4 miles per hour ; and values of the wind velocity given by the formula $\mathrm{V}=3 v$ are too high when V exceeds 12. Since the two formulæ agree, however, for $V=12$, the mean values of the wind velocity (which seldom differ much from 12) will be approximately correct in either case; therefore, for the sake of continuity and simplicity, the formula $\mathrm{V}=3 v$ will continue to be used. In future volumes, however, the greatest hourly measures (p. E 83) will be given according to both formulæ, and the least hourly measures will be omitted.

The experiments by Mr. W. H. Dines, above referred to, are described in the Introduction to the volume for 1889.

Rain Gauges.-During the year 1910 eight rain gauges were employed, placed at different elevations above the ground, complete information in regard to which will be found at page (E 70) of the Meteorological Section.

The gauge No. 1 forms part of the Osler Anemometer apparatus, and is selfregistering, the record being made on the sheet on which the direction and pressure of the wind are recorded. The receiving surface is a rectangular opening

Exxx Introduction to Greenwich Meteorological Observations, 1910.

10×20 inches (200 square inches in area). The collected water passes into a vessel suspended by spiral springs, which lengthen as the water accumulates, until 0.25 inch is collected. The water then discharges itself by means of the following modification of the siphon. A vertical copper tube, open at both ends, is fixed in the receiver, with one end just projecting below the bottom. Over this tube a larger tube, closed at the top, is loosely placed. The accumulating water, having risen to the top of the inner tube, begins to flow off into a small tumbling bucket, fixed in a globe placed underneath, and carried by the receiver. When full, the bucket falls over, throwing the water into a small exit pipe at the lower part of the globe-the only outlet. This creates a partial vacuum in the globe sufficient to cause the longer leg of the siphon to act, and the whole remaining contents of the receiver then run off, through the globe, to a waste pipe. The spiral springs at the same time shorten, and raise the receiver. The gradual descent of the water vessel as the rain falls, and the immediate ascent on discharge of the water, act upon a pencil, and cause a corresponding trace to be made on the paper fixed to the moving board of the anemometer. The rain scale on the paper was determined experimentally by passing a known quantity of water through the receiver. The continuous record thus gives complete information on the rate of the fall of rain, but the record is liable to interruption when the staging is erected for experiments with the Osler Anemometer.

Gauge No. 2 is a ten-inch circular gauge, placed close to gauge No. 1, its receiving surface being precisely at the same level. The gauge is read daily at $9^{\text {h }}$ Greenwich civil time. This is also liable to interference, just as No. 1.

Gauges Nos. 3, 4, and 5 are 8 -inch circular gauges, placed respectively on the roof of the Octagon Room, over the roof of the Magnetic Observatory, and on the roof of the Photographic Thermometer Shed. All are read daily at $9^{\text {h }}$ Greenwich civil time.

Gauge No. 6 is an 8 -inch circular gauge placed with the receiving surface 5 inches above the ground in the Magnetic Pavilion enclosure, about 10 feet north-west of the thermometer stand, and gauge No. 7 , also an 8 -inch circular gauge, is similarly placed in the ground south-east of the Magnetic Observatory. No. 8 is a new gauge of the same diameter, but of the modified Snowdon pattern adopted by the Meteorological Office, having its receiving surface 1 foot above the ground. It was brought into use 1908 January 1, being fixed SW by W from No. 6 with a clear space of 6 feet between the rims. No. 6 is the Standard gauge, Nos. 7 and 8 are used as checks on the readings of No. 6. No. 6 is read daily, usually at $9^{\text {h }}, 15^{\text {h }}$, and $21^{\text {h }}$ Greenwich civil time, and Nos. 7 and 8 at $9^{\text {h }}$ only as a rule.

The height of the Standard gauge above mean sea-level was determined by

Mr. H. A. H. Christie on 1908 February 26, and was found to be 5 feet 9 inches less than in its old position in the Observatory Grounds, before removal to the Pavilion Enclosure.

The gauges are also read at midnight on the last day of each calendar month.
Electrometer.-The electric potential of the atmosphere is measured by means of a Thomson self-recording quadrant electrometer, made by White, of Glasgow. It is situated in the Upper Magnet Room, in connection with Lord Kelvin's water-dropping apparatus, and with the usual arrangements for photographic registration. The time scale is the same as for the magnetic registers, the hourly break of trace being made by the driving-clock itself.

Sunshine Recorder.-The Campbell-Stokes instrument, which has been in use since 1887, records the duration of bright sunshine by the length of blackened trace produced by the concentration of the sun's rays on a card. A spherical glass globe brings the rays to a focus. The recording cards are supported by carriers no larger than is required for keeping them in proper position; one straight card serves for the equinoctial periods of the year, and another, curved, for the solstitial periods, the only difference between the summer and winter cards being that the summer cards are the longer: grooves are provided so that the cards are placed in position with great readiness. The daily record is transferred to a sheet of paper specially ruled with equal vertical spaces to represent hours, each sheet containing the record for one calendar month. The daily sums, and sums for each hour (reckoning from apparent midnight) through the month, are thus readily formed. The recorded durations are to be understood as indicating the amount of bright sunshine, no register being obtained when the sun shines faintly through fog or cloud, or when the sun is very near the horizon. Until 1896 February 5 the instrument was placed on a table upon the platform above the Magnetic Observatory, about 21 feet above the ground, and 176 feet above mean sea level. On account of the extension of the buildings in the south ground, it was found necessary on 1896 February 6 to remove the sunshine recorder from the roof of the Magnetic Observatory to a commanding position on the stage carrying the Robinson anemometer, on the roof of the Octagon Room, about 50 feet above the ground. A clear view of the sun is obtained in this position from sunrise to sunset, but some inconvenience is caused by the smoke from neighbouring chimneys. Very little record is obtained near to sunrise at any part of the year.

It was pointed out by Mr. Marriott, Secretary of the Royal Meteorological Society, towards the end of 1896, that the record by the Campbell-Stokes instrument exhibited a notable falling off. This, though not very marked till 1896, had certainly begun in

Exxxii Introduction to Greenwica Meteorological Observations, 1910.

1894, and it was found to be due to opacity in the glass globe, which appears to have deteriorated. On 1897 January 1 a globe of clearer glass, presented to the Royal Observatory in 1881 by the late Mr. Campbell, was substituted for the defective globe.

The deterioration of the old ball is fully discussed by Mr. Curtis in the Quarterly Journal of the Royal Meteorological Society, vol. xxiv.

Ozonometer.-This apparatus was fixed on the roof of the Photographic Thermometer shed, at a beight of about 10 feet from the ground. The box in which the papers were formerly exposed is of wood: it is about 8 inches square, blackened inside, and so constructed that there is free circulation of air through the box, without exposure of the paper to light. Since 1901 the papers have been exposed in the Stevenson's screen in the Magnetic Pavilion Enclosure, in order to be at a greater distance from the main buildings, the use of the old Ozonometer box being temporarily discontinued, as a comparison had shown that more ozone was indicated in the new position. On 1906 October 22, the Ozonometer box was removed and placed on the top of the Stevenson's screen in the Magnetic Pavilion Enclosure, and Ozone papers subsequently exposed for purposes of comparison, both in the box and in the screen. The papers exposed at $9^{\mathrm{h}}, 15^{\mathrm{h}}$, and 21^{h} are collected respectively at $15^{\mathrm{h}}, 21^{\mathrm{h}}$, and 9^{h}, and the degree of tint produced is compared with a scale of graduated tints, numbered from 0 to 10 . The value of ozone for the civil day is determined by taking the degree of tint obtained at each hour of collection as proportional to the period of exposure. Thus, to form the value for any given civil day, three-fourths of the value registered at 9^{h}, the values registered at 15^{h} and 21^{h}, and onefourth of that registered at the following $9^{\text {h }}$, are added together, the resulting sum (which appears in the tables of "Daily Results of the Meteorological Observations") being taken as the value referring to the civil day on a scale of 0 to 30 . The means of the $9^{\text {h }}, 15^{\text {h }}$, and $2 \mathrm{l}^{\mathrm{h}}$ values, as observed, are also given for each month in the footnotes.

§ 7. Meteorological Reductions.

The results given in the Meteorological Section refer to the civil day, commencing at midnight.

All results in regard to atmospheric pressure, temperature of the air and of evaporation with deductions therefrom, and atmospheric electricity, are derived from the photographic records, excepting that the maximum and minimum values of air temperature are those given by eye observation of the ordinary maximum and minimum thermometers at $9^{\mathrm{h}}, 15^{\mathrm{h}}$, and 21^{h} (civil reckoning), reference being made, however, to the photographic register when necessary to obtain the values
corresponding to the civil day from midnight to midnight. The hourly readings of the photographic traces for the elements mentioned are entered into a form having double argument, the horizontal argument ranging through the 24 hours of the civil day (0^{h} to 23^{h}), and the vertical argument through the days of a calendar month. Then for all the photographic elements, the means of the numbers standing in the vertical columns of the monthly forms, into which the values are entered, give the mean monthly photographic values for each hour of the day, the means of the numbers in the horizontal columns giving the mean daily value. It should be mentioned that before measuring out the electrometer ordinates, a pencil line was first drawn through the trace to represent the general form of the curve, in the way described for the magnetic registers (page Exiv), excepting that no day has been omitted on account of unusual electrical disturbance, as it has been found difficult to decide on any limit of disturbance beyond which it would seem proper, as regards determination of diurnal inequality, to reject the results. In measuring the electrometer ordinates a scale of inches is used, and the values given in the tables which follow are expressed in thousandths of an inch, positive and negative potential being denoted by positive and negative numbers respectively. The scale has not been determined in terms of any electrical unit.

To correct the photographic indications of barometer and dry and wet bulb thermometers for small instrumental error, the means of the photographic readings at $9^{\text {h }}$, 12^{h} (noon), 15^{h}, and 21^{h} in each month are compared with the corresponding corrected mean readings of the standard barometer and standard dry and wet bulb thermometers, as given by eye observation. A correction applicable to the photographic reading at each of these hours is thus obtained, and, by interpolation, corrections for the intermediate hours are found. The mean of the twenty-four hourly corrections in each month is adopted as the correction applicable to each mean daily value in the month. Thus mean hourly and mean daily values of the several elements are obtained for each month. The process of correction is equivalent to giving photographic indications in terms of corrected standard barometer, and in terms of the standard dry and wet bulb thermometers exposed on the free stand. The barometer results are not reduced to sea level, neither are they corrected for the effect of gravity, by reduction to the latitude of 45°.

The mean daily temperature of the dew-point and degree of humidity are deduced from the mean daily temperatures of the air and of evaporation by use of Glaisher's Hygrometrical Tables. The factors by which the dew-point given in these tables is calculated were found by Mr. Glaisher from the comparison of a great number of dew-point determinations obtained by use of Daniell's hygrometer, with simultaneous observations of dry and wet bulb thermometers, combining observations made at the

Exxxiv Introduction to Greenwich Meteorological Observations, 1910.

Royal Observatory, Greenwich, with others made in India and at Toronto. The factors are given in the following table.

Table of Factors by which the Difference between the Readings of the Dry-Bulb and Wet-Bulb Thermometers is to be Multiplied in order to produce the Corresponding Difference between the Dry-Bulb Temperature and that of the Dew-Point.

Reading of Dry-bulb Thermometer.	Factor.						
10°	8.78	33	3.01	56°	$1 \cdot 94$	79	1.69
11	8.78	34	2•77	57	1.92	80	I. 68
12	8.78	35	$2 \cdot 60$	58	$1 \cdot 90$	81	I. 68
13	$8 \cdot 77$	36	$2 \cdot 50$	59	I-89	82	I-67
14	$8 \cdot 76$	37	$2 \cdot 42$	60	I. 88	83	I. 67
15	$8 \cdot 75$	38	2.36	61	1.87	84	I. 66
16	$8 \cdot 70$	39	2.32	62	1.86	85	1.65
17	$8 \cdot 62$	40	$2 \cdot 29$	63	1.85	86	1.65
18	8.50	41	$2 \cdot 26$	64	I.83	87	I. 64
19	8.34	42	$2 \cdot 23$	65	1.82	88	I. 64
20	8.14	43	$2 \cdot 20$	66	1.81	89	1.63
21	7-88	44	$2 \cdot 18$	67	I.80	90	1. 63
22	$7 \cdot 60$	45	2.16	68	1.79	91	1.62
23	$7 \cdot 28$	46	$2 \cdot 14$	69	1.78	92	I-62
24	$6 \cdot 92$	47	2.12	70	1•77	93	I-6I
25	$6 \cdot 53$	48	2.10	71	1.76	94	I.60
26	$6 \cdot 08$	49	2.08	72	1.75	95	I.60
27	5.61	50	2.06	73	1.74	96	I-59
28	5.12	51	$2 \cdot 04$	74	1•73	97	I•59
29	$4 \cdot 63$	52	2.02	75	I•72	98	1. 58
30	4.15	53	$2 \cdot 00$	76	1.71	99	I. 58
31	3.70	54	1.98	77	$1 \cdot 70$	100	- 57
32	$3 \cdot 32$	55	I 96	78	1-69		

In the same way the mean hourly values of the dew-point temperature and degree of humidity in each month (pages E 65 and E 66) have been calculated from the corresponding mean hourly values of air and evaporation temperatures (pages E 64 and E65).

The excess of the mean temperature of the air on each day above the average of 65 years, given in the "Daily Results of the Meteorological Observations," is found by comparing the numbers contained in column 6 with a table of average daily temperatures found by smoothing the accidental irregularities of the daily means deduced from the observations for the sixty-five years 1841-1905. In this series the mean daily temperature from 1841 to 1847 depends usually on 12 observations daily, in 1848 on

6 observations daily, and from 1849 to 1905 on 24 hourly readings from the photographic record. The smoothed numbers are given in the following table.

Adopted Values of Mean Temperature of the Air, deduced from the Observations for the Sixty-five Years 184I-I 905 .

Day of the Month.				等	宊	ٌ	$\stackrel{3}{3}$	$\stackrel{+0}{*}$		H.		
I	38.6	$3{ }^{\circ} \cdot 6$	$40 \cdot 4$	$45^{\circ} \cdot 3$	$49^{\circ} 3$	57.4	$6{ }^{\circ} \cdot 5$	$62^{\circ} \cdot 2$	59.8	$54^{\circ} \cdot 1$	$47^{\circ} \mathrm{O}$	$4 \stackrel{\circ}{\circ} 9$
2	$38 \cdot 4$	$39 \cdot 5$	$40 \cdot 4$	$45 \cdot 7$	49.5	$57 \cdot 4$	61.6	$62 \cdot 1$	59.7	53.7	$46 \cdot 8$	$40 \cdot 9$
3	$38 \cdot 3$	39.5	$40 \cdot 5$	$46 \cdot$	$49 \cdot 8$	58.1	6I.8	$62 \cdot 1$	59.6	53.3	$46 \cdot 6$	41•I
4	$38 \cdot 3$	39.5	$40 \cdot 7$	$46 \cdot 2$	50.0	$58 \cdot 3$	$62 \cdot 1$	$62 \cdot 1$	59.5	53.0	$46 \cdot 4$	41'3
5	$38 \cdot 2$	$39 \cdot 6$	$40 \cdot 9$	$46 \cdot 3$	$50 \cdot 3$	$58 \cdot 4$	$62 \cdot 3$	$62 \cdot 1$	59.4	$52 \cdot 8$	$46 \cdot 1$	41.5
6	$38 \cdot 1$	$39 \cdot 6$	$41 \cdot 0$	$46 \cdot 3$	50.5	$58 \cdot 3$	62.4	$62 \cdot 2$	59°	52.5	$45 \cdot 8$	41.5
7	$38 \cdot 0$	$39 \cdot 5$	41\%	$46 \cdot 3$	$50 \cdot 7$	$58 \cdot 2$	62.4	$62 \cdot 2$	59°	$52 \cdot 3$	$45 \cdot 4$	41'3
8	37.9	$39^{\circ} 3$	41.1	$46^{\text {I }}$	51.0	$58 \cdot 1$	62.4	$62 \cdot 3$	$58 \cdot 8$	52.0	$45^{\circ} \mathrm{O}$	41.0
9	37.9	39^{1}	41.0	$46 \cdot 0$	51.2	$58 \cdot 0$	62.4	$62 \cdot 3$	$58 \cdot 6$	$51 \cdot 6$	$44 \cdot 6$	$40 \cdot 6$
10	$37 \cdot 9$	38.9	$40 \cdot 9$	$45^{\circ} 9$	51.5	$58 \cdot 1$	$62 \cdot 5$	$62 \cdot 3$	$58 \cdot 4$	$51 \cdot 3$	44.3	$40 \cdot 4$
11	37.9	$38 \cdot 8$	41.0	$45 \cdot 8$	$5 \mathrm{I} \cdot 8$	$58 \cdot 2$	$62 \cdot 7$	62.4	$58 \cdot 1$	$50 \cdot 9$	$44^{\circ} \mathrm{O}$	$40 \cdot 2$
12	37.9	$38 \cdot 8$	4I•I	$45^{\circ} 9$	$52 \cdot 1$	58.4	$62 \cdot 9$	62.5	$58 \cdot 0$	$50 \cdot 6$	$43 \cdot 7$	$40 \cdot 3$
13	$38 \cdot 0$	39°	413	$46 \cdot 1$	52.4	$58 \cdot 5$	$63 \cdot 1$	62.5	$57 \cdot 8$	$50 \cdot 3$	$43 \cdot 5$	$40 \cdot 5$
14	$38 \cdot$	393	41'5	$46 \cdot 4$	$52 \cdot 6$	$58 \cdot 7$	$63 \cdot 3$	62.5	57.7	$50 \cdot 1$	$43 \cdot 3$	$40 \cdot 7$
15	$38 \cdot 1$	39.4	41•7	$46 \cdot 8$	$52 \cdot 8$	$58 \cdot 8$	63.4	62.4	$57 \cdot 6$	$49 \cdot 9$	$43 \cdot 1$	$40 \cdot 8$
16	$38 \cdot 3$	39.5	419	47.2	53.0	$58 \cdot 9$	63.4	$62 \cdot 3$	57.5	$49^{\circ} 8$	$42 \cdot 8$	$40 \cdot 7$
17	$38 \cdot 5$	39.6	$42 \cdot 0$	$47 \cdot 6$	$53 \cdot 1$	59°	63.4	$62 \cdot 1$	57.2	$49 \cdot 6$	$42 \cdot 6$	$40 \cdot 4$
18	$38 \cdot 6$	39.5	$42 \cdot 0$	$48 \cdot 0$	$53 \cdot 3$	$59^{.2}$	$63 \cdot 3$	6I.9	56.9	$49 \cdot 3$	42.4	$40 \cdot 0$
19	$38 \cdot 7$	39.5	4199	$48 \cdot 3$	53.5	59.5	$63 \cdot 2$	$6 \mathrm{r} \cdot 7$	$56 \cdot 5$	49^{1}	$42 \cdot 3$	39.5
20	$38 \cdot 8$	39.5	41•9	$48 \cdot 5$	$53 \cdot 8$	59.9	63.2	$61 \cdot 5$	$56 \cdot 2$	$48 \cdot 8$	$42 \cdot 2$	$39^{\circ} \mathrm{O}$
21	$38 \cdot 8$	39.6	419	$48 \cdot 7$	54.2	$60 \cdot 3$	$63 \cdot 2$	6I•3	55.9	$48 \cdot 6$	$42 \cdot 1$	38.7
22	$38 \cdot 8$	39.7	42.0	$48 \cdot 7$	$54 \cdot 6$	$60 \cdot 6$	63.1	$6 \mathrm{I} \cdot 1$	$55 \cdot 6$	$48 \cdot 3$	$42 \cdot 1$	$38 \cdot 4$
23	$38 \cdot 9$	$39 \cdot 8$	$42 \cdot 2$	$48 \cdot 6$	54.9	$60 \cdot 9$	63.0	$60 \cdot 9$	55.4	$48 \cdot 1$	$42 \cdot 0$	$38 \cdot 2$
24	$38 \cdot 9$	$40 \cdot 0$	42.4	$48 \cdot 6$	$55 \cdot 3$	$6 \mathrm{I} \cdot 2$	$62 \cdot 9$	$60 \cdot 8$	55.3	47.9	$42 \cdot 0$	38.2
25	39^{1} I	$40 \cdot 1$	$42 \cdot 7$	$48 \cdot 6$	$55 \cdot 5$	$6 \mathrm{I} \cdot 4$	$62 \cdot 7$	$60 \cdot 7$	$55^{\circ} 2$	$47 \cdot 7$	41.9	$38 \cdot 4$
26	39.3	$40 \cdot 2$	43.0	$48 \cdot 6$	$55 \cdot 8$	$61 \cdot 5$	$62 \cdot 5$	$60 \cdot 7$	$55^{\prime 2}$	$47 \cdot 6$	41.8	38.6
27	$39 \cdot 5$	$40 \cdot 3$	$43 \cdot 3$	$48 \cdot 7$	$56 \cdot 0$	6I.6	62.4	$60 \cdot 6$	55.1	47.5	417	38.8
28	$39 \cdot 6$	$40 \cdot 3$	43.7	$48 \cdot 8$	$56 \cdot 2$	$6 \mathrm{I} \cdot 6$	$62 \cdot 3$	$60 \cdot 4$	54.9	$47 \cdot 4$	41.5	38.9
29	39.7		$44^{1} 1$	49°	$56 \cdot 4$	6I.6	$62 \cdot 3$	$60 \cdot 3$	54.7	$47 \cdot 3$	$41 \cdot 2$	39°
30	39.7		$44 \cdot 5$	$49^{\circ} \mathrm{I}$	567	61.5	$62 \cdot 3$	$60 \cdot 1$	54.4	$47^{\circ} 2$	$4{ }^{10}$	38.9
31	$39^{\circ} 7$		$44^{\circ} 9$		57.1		$62 \cdot 2$	59.9		$47 \cdot 1$		$38 \cdot 7$
Means	$38 \cdot 6$	$39^{\circ} 5$	41.9	$47 \cdot 3$	$53^{1} 1$	59.4	62.7	61.6	57.2	50.0	$43 \cdot 5$	399
The mean of the twelve monthly values is $49^{\circ} \cdot 6$.												

The daily register of rain contained in column 16 is that recorded by the gauge No. 6, whose receiving surface is 5 inches above the ground. This gauge is usually read at $9^{\mathrm{h}}, 15^{\mathrm{h}}$, and 21^{h} Greenwich civil time. The continuous record of Osler's self-

Exxxvi Introduction to Greenwich Meteorological Observations, 1910.

registering gauge shows whether the amounts measured at $9^{\text {h }}$ are to be placed to the same, or to the preceding civil day; and in cases in which rain fell both before and after midnight, also gives the means of ascertaining the proper proportion of the 9^{h} amount which should be placed to each civil day. The number of days of rain given in the footnotes, and in the abstract tables, pages E 63 and E 70 , is formed from the records of this gauge. In this numeration only those days are counted on which the fall amounted to or exceeded $0^{\text {in. }} 005$.

The indications of atmospheric electricity are derived from Thomson's Electrometer. Occasionally, during interruption of photographic registration, the results depend on eye observations.

No particular explanation of the anemometric results seems necessary. It may be understood generally that the greatest pressures usually occur in gusts of short duration. The "Mean of 24 Hourly Measures" was in former years the mean of 24 measures of pressure taken at each hour, but commencing with 1887 January 1, it is the mean of measures, each one of which is the average pressure during the hour of which the nominal hour is the middle point.

The mean amount of cloud given in the footnotes on the right-hand pages E 39 to E 61 , and in the abstract table, page E 63 , is the mean found from observations made usually at $9^{\mathrm{h}}, 12^{\mathrm{h}}$ (noon), 15^{h}, and 21^{h} of each civil day.

For understanding the divisions of time under the headings, "Clouds and Weather" and "Electricity," the following remarks are necessary:-In regard to Clouds and Weather, the day is divided by columns into two parts (from midnight to noon, and from noon to midnight), and each of these parts is subdivided into two or three parts by colons (i). Thus, when there is a single colon in the first column, it denotes that the indications before it apply (roughly) to the interval from midnight to 6^{h}, and those following it to the interval from 6^{h} to noon. When there are two colons in the first column, it is to be understood that the twelve hours are divided into three nearly equal parts of four hours each. And similarly for the second column. In regard to Electricity, the results are included in one column; in this case the colons divide the whole period of 24 hours (midnight to midnight).

The notation employed for Clouds and Weather is as follows, it being understood that for clouds Howard's Nomenclature is used. The figure denotes the proportion of sky covered by cloud, an overcast sky being represented by 10 .

Exxxviii Introduction to Greenwich Meteorological Observations, 1910.

The following is the notation employed for Electricity:-

N	denotes negative	w denotes weak			
P	\ldots	positive	s	\ldots	strong
m	\ldots	moderate	v	\ldots	variable

The duplication of the letter denotes intensity of the modification describedthus, ss is very strong; vv, very variable. 0 indicates zero potential, and a dash, "一," accidental failure of the apparatus.

The remaining columns in the tables of "Daily Results" seem to require no special remark; all necessary explanation regarding the results therein contained will be found in the notes at the foot of the left-hand page, or in the descriptions of the several instruments given in § 6 .

In regard to the comparisons of the extremes and means, \&c. of meteorological elements with average values, contained in the footnotes, it may be mentioned that comparison is in all cases made with mean values determined from the observations for the sixty-five years 1841-1905.

The tables following the "Daily Results" require no lengthened explanation. They consist of tables giving the highest and lowest readings of the barometer through the year; monthly abstracts of the principal meteorological elements; hourly values in each month of barometer-reading, of temperature of air, evaporation, and dewpoint, and of degree of humidity ; sunshine results; regular observations of thermometers in the Magnetic Pavilion Enclosure with comparison between those in the open stand and the Stevenson screen; rain results; readings of the earth thermometers; changes of direction of the wind; hourly values in each month of the horizontal movement of the air derived from Robinson's Anemometer; results derived from the Thomson Electrometer ; and observations of parhelia, paraselenæ, and meteors.

In the tables of mean values of meteorological elements at each hour for the different months of the year, the mean values have, in previous years, been given for the hours 0^{h} to 23^{h} only. But since 1886 the mean for the 24 th hour (the following midnight) has been added, thus indicating the amount of non-periodic variation. The monthly means have also been given since 1886 for the 24 hours, $1^{\text {h }}$ to $24^{\text {h }}$, as well as for the hours, $0^{\text {h }}$ (midnight) to $23^{\text {h }}$, which were given in former years.

It may be pointed out that the monthly means, 0^{h} to 23^{h}, for barometer and temperature of the air and of evaporation contained in these tables, pages E 64 and E 65, do not in some cases agree with the monthly means given in the daily results
pages E 38 to E 60 , and in the table on page E 63 , in consequence of occasional interruption of the photographic register, at which times daily values to complete the daily results could be supplied from the eye observations, as mentioned in the footnotes; but hourly values, for the diurnal inequality tables, could not be so supplied. In such cases, however, the means given with these tables are the proper means to be used in connexion with the numbers standing immediately above them, for formation of the actual diurnal inequality.

The table, "Abstract of the Changes of the Direction of the Wind," as derived from Osler's Anemometer, page E 76, exhibits every change of direction of the wind occurring throughout the year, whenever such change amounted to two nautical points or $22 \frac{1}{2}^{\circ}$. It is to be understood that the change from one direction to another during the interval between the times mentioned in each line of the table was generally gradual. All complete turnings of the vane which were evidently of accidental nature, and which in the year 1881 and in previous years had been included, are here omitted. Between any time given in the second column and that next following in the first column, no change of direction in general occurred varying from that given by so much as one point or $11 \frac{1}{4}^{\circ}$. From the numbers given in this table the monthly and yearly excess of motion, page E 82 , is formed. By direct motion it is to be understood that the change of direction occurred in the order N, E, S, W, N, \&c., and by retrograde motion that the change occurred in the order $\mathrm{N}, \mathrm{W}, \mathrm{S}, \mathrm{E}, \mathrm{N}, \& \mathrm{c}$.

In regard to Electric Potential of the Atmosphere, in addition to giving the hourly values in each month, including all available days, the days in each month have been (since the year 1882) further divided into two groups, one containing all days on which the rainfall amounted to or exceeded $0^{\text {in. }} 020$, the other including only days on which no rainfall was recorded, the values of daily rainfall given in column 16 of the "Daily Results of the Meteorological Observations" being adopted in selecting the days. These additional tables are given on pages E 86 and E 87 respectively.

In regard to the observations of Luminous Meteors, it is simply necessary to say that, in general, only special meteor showers are watched for, such as those of April, August, and November. The observers of meteors in the year 1910 were Mr. Edney, Mr. Loomes and Mr. Timbury. Their observations are distinguished by the initials E., L. and T. respectively.

> F. W. DYSON.

[^0]
ROYAL OBSERVATORY, GREENWICH.

RESULTS

of

MAGNETICAL OBSERVATIONS

(EXCLUDING DAYS OF GREAT MAGNETIC DISTURBANCE),
1910.

Table I.-Mean Magnetic Declination West for mach Civil Day. (Each result is the mean of 24 hourly ordinates from the photographic register.)												
1910.												
Day of Month.	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.
	15°	15°	15°	15°	155°	15°	15°	15°	15°	15°	$15{ }^{\circ}$	15°
${ }_{\text {d }}$ d	449	$44^{\circ} 6$	$43^{\prime} 2$	44'5	4i'8	$4{ }^{\circ} \mathrm{I}$	$4^{\prime \prime} 7$	4i•8	$4{ }^{\circ} \mathrm{O}$	$37^{\prime} \cdot 1$	$3^{8} \cdot 8$	38.1
2	$46 \cdot 5$	$44^{\circ} 8$	$44^{\circ} \mathrm{O}$	43.2	41.6	$40 \cdot 0$	40.9	419	$39 \cdot 3$	$38 \cdot 5$	$39^{\prime} 1$	37.5
3	$46 \cdot 5$	44.7	44.4	44°	$40 \cdot 7$	$40 \cdot 7$	41.2	$41 \cdot 6$	$39 \cdot 8$	39.4	$39^{\circ} \mathrm{I}$	$36 \cdot 8$
4	46.0	$44^{\circ} \mathrm{O}$	43.5	$43 \cdot 8$	$42 \cdot 2$	$40 \cdot 5$	$41 \cdot 2$	$42 \cdot 5$	$40 \cdot 1$	$38 \cdot 1$	$39^{\circ} 2$	37.5
5	$4^{6 \cdot 0}$	44^{1}	44.9	43.4	41.4	$40 \cdot 5$	42.5	41.8	$39^{\circ} 9$	37.9	39.0 38.8	$37 \cdot 2$ $36 \cdot 7$
6	$45 \cdot 9$	$43 \cdot 9$	$43 \cdot 7$	$43 \cdot 5$	$41 \cdot 6$	$40 \cdot 8$	4177	41*4	$39^{\circ} 6$	$38 \cdot 7$	$38 \cdot 8$	36.7
7	$45^{\circ} 8$	$43 \cdot 7$	$43^{\cdot 2}$	$43 \cdot 3$	41^{18}	$40 \cdot 4$ -	414	41.4	$40 \cdot 2$	37.9	39°	$37 \cdot 1$ 37.2
8	46.0	$43 \cdot 8$	$44^{\circ} \mathrm{O}$	$42 \cdot 8$	42.4	$41^{\circ} \mathrm{O}$	$40 \cdot 9$	$4 \mathrm{I} \cdot \mathrm{I}$	$38 \cdot 7$	37.5	$38 \cdot 0$ $38 \cdot 3$	37.2
9	$45^{\circ} 9$	$44^{.6}$	43.7	43.4	414	415	$40^{\circ} 9$	$41 \cdot 8$	$39 \cdot 5$	37.9	$38 \cdot 3$ $38 \cdot 8$	37.4
10	$46 \cdot 2$	44.5	$43 \cdot 3$	$43^{\circ} 2$	$42 \cdot 8$	$41^{\circ} \mathrm{O}$	$4 \mathrm{I}^{\circ} \mathrm{O}$	41.2	39.6	37.6	$38 \cdot 8$ $38 \cdot 6$	37.2
11	459	$43 \cdot 8$	$44^{\circ} 5$	$43 \cdot 1$	417\%	$40^{\circ} 9$	$40 \cdot 3$	$40 \cdot 6$	39.3	37.7	38.6	37.5
12	,	$44^{\circ} \mathrm{O}$	44°	$42 \cdot 6$	41.6	$40^{\prime} 1$	$40 \cdot 4$	$4{ }^{1 / 2}$	$39^{\circ} 2$	$38 \cdot 1$ 37.6	$38 \cdot 8$ $38 \cdot 6$	37.5 37.7
13	. 8	43.5	$44^{\circ} 8$	$42 \cdot 7$	$42 \cdot 0$	$40 \cdot 2$	$40 \cdot 7$	$40 \cdot 7$	$39^{\circ} 9$	37.6	$38 \cdot 6$	37.7
14	$45 \cdot 8$	$44^{\circ} 3$	$44^{\circ} \mathrm{O}$	$43 \cdot 4$	41.5	$41^{\circ} 9$	$40 \cdot 4$	$41 \cdot 2$	$39^{\circ} 3$	38.0	$38 \cdot 7$ 38.7	37.4 38.5
15	$45 \cdot 5$	44.I	45.3	$43 \cdot 3$	415	$42^{\circ} \mathrm{O}$	$40 \cdot 3$	$40 \cdot 4$	39.4	$38 \cdot 6$ $38 \cdot 6$	$38 \cdot 2$ 39.6	$38 \cdot 5$ 36.7
16	456	44.3	...	$42 \cdot 3$	$41^{\circ} 0$	42.2	$39^{\circ} 9$	$40 \cdot 9$	39.3 39.8	$38 \cdot 6$ 38.5	$39^{\prime} 6$	$36 \cdot 7$ $37 \cdot 4$
178	$46 \cdot 9$	43.4	$4{ }^{\cdot 1}$	$42 \cdot 7$	41.6	$42 \cdot 2$	$40 \cdot 2$	$41 \cdot 3$	$39 \cdot 8$ 39	$38 \cdot 5$ 38.7	38.1 37.8	37.4 37.1
18	$45 \cdot 9$	43.4	$44^{\circ} \mathrm{I}$	$44 \cdot 6$	41'1	42.1	$39^{\circ} 7$	$39^{\circ} 9$.	39.7	$38 \cdot 7$ 37.8	$37 \cdot 8$ 38.6	$37 \cdot 1$
19	$46 \cdot 1$	$43 \cdot 8$	$44^{\circ} \mathrm{O}$	42.9	$40 \cdot 4$	42.4	$40 \cdot 2$	$41 \cdot 1$	39.7	37.8 38.8	$38 \cdot 6$ 38.6	$36 \cdot 9$ 37.4
20	$46 \cdot 2$	44.5	44.3	$42 \cdot 5$	$40 \cdot 8$	$40 \cdot 8$	39.7	40.0	39.6	38.8	$38 \cdot 6$	37.4
21	$45^{\circ} 9$	$44^{\circ} 3$	$42 \cdot 5$	$42 \cdot 5$	$40 \cdot 6$	$4 \mathrm{I} \cdot 1$	$40^{\circ} 0$	39.7	$40 \cdot 8$	38.8	39° 38	37 3 3
22	45°	43.4	$43 \cdot 9$	$42 \cdot 7$	40.0	$4 \mathrm{I} \cdot 8$	$40 \cdot 0$	$4 \mathrm{I} \cdot 8$	$40 \cdot 1$ $30 \cdot 8$	38.4	38.6	$37^{\circ} \mathrm{I}$
23	45°	$43 \cdot 1$	43.7	41.7	$40 \cdot 6$	$42 \cdot 5$	$39^{\circ} 8$	$40 \cdot 2$	$39^{\circ} 8$	$38 \cdot 2$ 38.8	38.8	37.3
24	$45^{\circ} 4$	$44^{\circ} \mathrm{O}$	43.7	$42 \cdot 7$	$42 \cdot 1$	$42 \cdot 3$	39.5	39^{8}	$40 \cdot 6$	$38 \cdot 8$ $37 \cdot 6$	38.7 38.6	$36 \cdot 1$ 38.2
25	$47^{\circ} \mathrm{O}$	$45^{\circ} 7$	$43 \cdot 8$ $43 \cdot 8$	$42 \cdot 0$ $42 \cdot 1$	$40 \cdot 7$ $40 \cdot 7$	$42 \cdot 3$	$40 \cdot 0$ $40 \cdot 1$	40% $40 \cdot 1$	$39^{\circ} 2$ $39^{\circ} 2$	$37 \cdot 6$ 37.3	38.6 38.9	$38 \cdot 2$ 37.6
26	44.5	$44^{\circ} \mathrm{O}$	$43 \cdot 8$ $43 \cdot 3$	$42 \cdot 1$ 44.7	40'7	$4^{2 \cdot}$	$40 \cdot 1$ $40 \cdot 5$	$40 \cdot 1$ $40 \cdot 2$	39.2 40.2	37.3 37.7	38 39	38.0
27 28	45.5 45.6	44.0 43.5	$43 \cdot 3$ $44^{\circ} \mathrm{I}$	44.7 42.5	$40 \cdot 7$ $40 \cdot 7$	$42 \cdot 1$ 41	$40 \cdot 5$ $40 \cdot 7$	$40 \cdot 2$ 409	$40 \cdot 2$ 39.9	$37 \cdot 7$ $38 \cdot 2$	39° $39^{\circ} 3$	$38 \cdot 0$ 367
29	$46 \cdot 0$	43	$45^{\prime} 1$	42.5	39.4	$41 \cdot 1$	$40 \cdot 9$	38.9	$37^{\cdot 1}$	37.9	$39^{\circ} 5$	$38 \cdot 0$
30	45.5	...	$4 \cdot 3 \cdot 3$	$42 \cdot 2$	$40 \cdot 6$	$42 \cdot 8$	$39^{\circ} 9$	41%	$40 \cdot 2$	38.3 38.7	39°	36.7
3 I	$45^{\circ} 9$	\ldots	$43 \cdot 3$	\ldots	$40 \cdot 7$...	$40 \cdot 2$	$39^{\circ} 5$...	$38 \cdot 7$...	$36 \cdot 4$

Table II.-Monthly Mean Diurnal Inequality of Magnetic Declination West.
(The results in each month are diminished ly the smallest hourly value.)

$\begin{aligned} & \text { Hour: } \\ & \text { Greenwich } \\ & \text { Civil Time } \end{aligned}$	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.
Midn.	0.5	0.4	$0 \cdot 1$	$2 \cdot 2$	$1 \cdot 7$	$3 \cdot 8$	$3 \cdot 2$	I'6	$0 \cdot 7$	$1 \cdot 2$	$1 \cdot{ }^{\prime}$	- $\quad 0$
$\mathbf{I}^{\text {b }}$	0.9	$\bigcirc \cdot 9$	$0 \cdot 0$	$2 \cdot 3$	2.0	$3 \cdot 6$	$3 \cdot 3$	$1 \cdot 5$	$0 \cdot 9$	1.8	$1 \cdot 6$	177
21	$1 \cdot 2$	1.4	00°	2.4	2.4	$3 \cdot 5$	3.0	1.6	$1{ }^{\circ} \mathrm{O}$	$2 \cdot 1$	2.2	2.4
3	1.6	1.6	$0 \cdot 2$	2.2	$2 \cdot 3$	$3 \cdot 3$	2.8	I.8	$0 \cdot 8$	$2 \cdot 2$	2.5	$2 \cdot 7$
4	1.6	1.4	0.4	$2 \cdot 1$	$2 \cdot 0$	$2 \cdot 3$	2.4	1.6	0.7	$2 \cdot 5$	$2 \cdot 7$	$2 \cdot 7$
5	1.7	$1 \cdot 3$	0.7	2.4	$1 \cdot 3$	$1{ }^{\circ} \mathrm{O}$	1.2	0.7	0.4	$2 \cdot 7$	$2 \cdot 7$	2%
6	1.6	$1 \cdot 3$	$1 \cdot 3$	$2 \cdot 1$	$0 \cdot 5$	$0 \cdot 1$	$0 \cdot 4$	0.4	0.5	$2 \cdot 9$	$2 \cdot 5$	2.9
7	1.6	1.4	$1 \cdot 1$	$1{ }^{\circ}$	$0 \cdot 0$	$0 \cdot 0$	$0 \cdot 0$	$0 \cdot 0$	0.2	$2 \cdot 6$	2.3	2.9
8	$1 \cdot 3$	$1 \cdot 2$	0.5	$0^{\circ} 0$	$0 \cdot 3$	$0 \cdot 3$	$0 \cdot 0$	0.2	$0 \cdot 0$	$1 \cdot 7$	I.8	$2 \cdot 7$
9	$0 \cdot 9$	$1 \cdot 4$	0.7	0.4	13	1. 6	$1 \cdot 0$	$1 \cdot 0$	$1 \circ$	$1 \cdot 6$	17	$2 \cdot 7$
10	2.0	$2 \cdot 3$	2.4	$2 \cdot 1$	3.0	3.7	$2 \cdot 7$	$3 \cdot 1$	3.1	2.9	$2 \cdot 7$	$3 \cdot 2$
11	3.5	$3 \cdot 9$	$4 \cdot 8$	$4 \cdot 8$	$5 \cdot 3$	$6 \cdot 3$	49	$5 \cdot 5$	$5 \cdot 6$	$5 \cdot 3$	4.5	$4^{\circ} \mathrm{O}$
Noon.	$4 \cdot 6$	$4 \cdot 8$	$7 \cdot 1$	$7 \cdot 4$	$7 \cdot 2$	$8 \cdot 3$	$6 \cdot 9$	7.7	$7 \cdot 2$	$7 \cdot 1$	$5 \cdot 8$	$4 \cdot 8$
$13^{\text {h }}$	$5 \cdot 5$	5.5	$8 \cdot 0$	$9 \cdot 0$	$8 \cdot 2$	$9 \cdot 2$	$8 \cdot 1$	$8 \cdot 9$	$7 \cdot 8$	$7{ }^{\circ} 7$	6.2	5^{11}
14	$5 \cdot 3$	5.5	$7 \cdot 5$	$8 \cdot 9$	$8 \cdot 2$	$9 \cdot 2$	$8 \cdot 4$	$8 \cdot 8$	6.9	$7 \cdot 3$	$5 \cdot 5$	47
15	43	4.4	$6 \cdot 1$	7.5	$7 \cdot 2$	$8 \cdot 3$	$7 \cdot 6$	$7 \cdot 2$	$5 \cdot 1$	6.0	4.4	4.0
16	$3 \cdot 5$	$3 \cdot 5$	$4 \cdot 6$	5.7	$6 \cdot 1$	$7 \cdot 5$	6.4	$5 \cdot 5$	$3 \cdot 1$	4.4	3.5	$3 \cdot 5$
17	$3 \cdot 1$	$2 \cdot 9$	$3 \cdot 5$	$4{ }^{\circ}$	$5 \cdot 1$	6.4	$5 \cdot 2$	$3 \cdot 8$	I.8	$3 \cdot 2$	2.7	2.9
18	2.7	$2 \cdot 2$	2.9	$3 \cdot 3$	$4 \cdot 2$	54	4.4	$2 \cdot 7$	$1 \cdot 1$	1.8	$2 \cdot 1$	2.4
19	2.2	$1 \cdot 7$	$1 \cdot 9$	3.0	$3 \cdot 3$	$4 \cdot 5$	3.9	$1 \cdot 9$	$0 \cdot 7$	0.7	$1 \cdot 4$	$1 \cdot 7$
20	$1 \cdot \mathrm{I}$	$1 \cdot 5$	1.0	$2 \cdot 6$	$2 \cdot 8$	3.8	$3 \cdot 7$	$1 \cdot 7$	0.9	0.2	$1 \cdot 1$	$0 \cdot 8$
21	$0 \cdot 3$	$1 \cdot \mathrm{I}$	0.4	$2 \cdot 3$		$3 \cdot 7$	3.5	19	1.0	$0 \cdot 1$	0.4	0.2
22	$0 \cdot 0$	0.2	$0 \cdot 1$	$2 \cdot 1$	$2 \cdot 6$	3.7	$3 \cdot 3$	$2 \cdot 0$	0.4	$0 \cdot 0$	$0 \cdot 0$	$0 \cdot 0$
23	0.2	$0 \cdot 0$	$0 \cdot 1$	$2 \cdot 0$	2.2	$3 \cdot 8$	3. 1	$1 \cdot 9$	$0 \cdot 4$	0.4	$0 \cdot 3$	$0 \cdot 3$
Means.	2.13	2.16	231	$3 \cdot 41$	$3^{\prime} \cdot 41$	4.30	$3 \cdot 73$	$3 \cdot 04$	2.14	$2 \cdot 85$	2.57	2.58

Table III.-Mean Horizontal Magnetic Force (diminished by a Constant) for each Civil Day.
(Each result is the mean of 24 hourly ordinates from the photographic register, expressed in terms of the whole Horizontal Force, the unit in the table being ${ }^{\circ} 0001$ of the whole Horizontal Force. The letters u and c indicate respectively values uncorrected for, and corrected for temperature.)

1910.																								
$\underset{\substack{\text { Day of } \\ \text { Month. }}}{ }$	January.		February.		March,		April.		May.		June.		July.		August.		September.		October.		November.		December.	
	u'	c	u	c	u	c	${ }^{\text {u }}$	c	u	${ }^{\circ}$	${ }^{\text {u }}$		${ }^{*}$	c	u	c	u	${ }^{\circ}$	${ }^{\text {u }}$	c	*	c	u	c
${ }^{\text {d }}$																								
1	\ldots	\ldots			528	08 I	322	870	422	002	517	092	536	116	638	208	555	166	528	124	427	995	125	705
2			607	137	530	08I	339	897	444	038	543	123	570	142	593	173	516	110	502	118	351	907	101	685
3			605	138	504	079	349	921	392	993	577	140	589	157	545	117	54^{2}	131	523	086	352	898	097	689
4	\ldots	\ldots	583	125	530	093	368	945	445	020	544	119	573	148	588	156	561	138	447	003	341	897	105	704
5		\cdots	575	112	522	085	425	983	435	995	595	165	557	146	59^{2}	169	555	118	545	117	316	860	157	770
6	...		635	222	516	105	436	-0	425	005	604	193	564	22	589	190	560	120	473	062	295	870	182	776
7			692	260	490	079	459	043	417	985	651	252	513	081	641	225	567	123	467	049	340	898	167	751
8	797	357	643	208	52 I	110	459	029	414	977	750	346	503	083	655	254	562	154	508	092	305	863	174	770
9	842	422	630	178	581	175	427	009	422	997	669	270	571	151	692	279	608	161	522	102	282	826	174	782
10	862	434	627	164	589	157	45^{2}	041	457	029	670	266	551	135	581	156	592	140	570	147	246	79^{2}	199	815
11	842	402	646	192	559	131	525	109	432	O19	680	310	581	158	616	184	572	152	584	164	339	851	215	807
12	843	382	645	187	561	129	580	174	459	043	766	370	598	185	617	197.	535	115	586	161	174	744	267	835
13			648	220	582	140	625	202	47^{8}	055	709	296	583	184	660	244	538	120	494	083	184	807	254	824
14	832	385	659	234	557	105	598	175	410	028	560	128	645	227	716	298	539	107	504	072	245	846	238	803
15	838	403	660	218	573	117	571	153	522	094	566	136	675	235	652	25 I	548	135	486	054	244	814	250	827
16	852	436	612	149			545	125	547	112	592	164	636	208	642	236	586	168	515	099	204	734	174	768
17	788	344	611	198			542	112	602	167	594	174	636	216	664	251	567	144	550	139	116	649	185	750
18	745	296	605	165	544	100	335	929	564	158	629	197	665	242	674	254	552	146	592	164	069	611	163	745
19	720	280	615	192	527	083	477	073	510	109	658	240	684	249	625	217	580	152	456	048	020	578	186	761
20	757	290	603	183	416	969	575	147	608	195	605	204	693	253	667	256	560	113	421	989	038	582	089	673
21	758	293	591	144	429	001	588	160	645	234	535	148	665	261	651	240	470	016	408	990	116	646	143	730
22	717	215	553	118	496	056	589	159	624	201	506	100	664	244	451	028	469	034	405	001	094	627	089	690
23	663	196	575	131	510	066	424	982	602	203	540	115	651	226	554	148	472	035	443	018	120	639	089	654
24	573	157	559	131	500	075	404	981	563	138	528	108	591	171	577	164	455	047	399	981	11	659	152	732
25	568	098	520	080	505	073	442	014	455	006	536	111	605	189	600	177	488	080	399	983	091	680	010	599
26	630	130	545	093	514	082	433	017	433	041	548	101	557	129	649	241	527	097	450	037	088	651	018	590
27	630	126	541	087	514	070	302	874	526	094	528	-98	545	137	620	190	497	$\bigcirc 98$	402	989	101	681	047	589
28	620	185	540	091	160	730	337	929	539	114	547	139	607	208	623	183	554	134	456	038	083	687	2	523
29	688	227			324	894	345	917	53^{8}	127	550	139	599	193	587	150	475	081	432	026	983	546	954	519
30	720	227			423	969	393	965	530	095	515	-90	599	176	613	185	494	062	433	015	041	616		\ldots
31					319	863			482	$\bigcirc 52$				185	59^{2}	169			407	977				

At the end of January, and again at the end of the year, experiments were made for determination of the angle of torsion, thus breaking the continuity of the values.

Table IV.-Mean Temperature for each Civil Day within the box inclosing the Horizontal Force Magnet.

Table V.-Monthly Mean Diurnal Inequality of Horizontal Magnetic Force.

(The results are expressed in terms of the whole Horizontal Force, diminished in each case by the smallest hourly value, the unit in the table being $\cdot 0001$ of the whole Horizontal Force. The letters u and c indicate respectively values uncorrected for, and corrected for temperature.)

$\begin{gathered} \text { Hour, } \\ \text { Greenwich } \\ \text { Civil } \\ \text { Time. } \\ \hline \end{gathered}$	January.		February.		March.		A pril.		May.		June.		July.		August.		September.		October.		November.		December.	
	u	c	*	c	u	c	u	c	u	c	u	c	\because	c	u	c	u	c	u	c	u	c	u	c
Midn.	59	73	52	64	III	133	202	221	139	158	172	189	160	172	209	221	170	184	169	181	82	102	54	59
$\mathrm{I}^{\text {b }}$	68	79	50	62	116	135	191	208	130	146	169	183	154	164	195	204	169	181	167	176	92	109	53	56
2	73	82	52	62	115	132	181	196	122	136	163	175	150	160	177	186	161	173	I67	174	96	108	47	47
3	81	88	57	65	III	123	180	192	116	128	${ }_{161}$	173	144	152	175	182	157	166	170	177	107	115	49	47
4	92	97	70	75	122	132	181	188	111	120	162	171	136	144	178	183	156	163	176	181	114	119	65	61
5	III	116	83	86	126	131	176	181	112	119	158	165	141	146	175	177	150	157	186	188	124	127	87	80
6	123	125	89	89	120	123	160	${ }_{163}$	102	106	129	134	120	123	151	153	132	136	182	184	130	130	99	92
7	116	116	84	84	100	100	147	147	83	85	89	91	96	96	105	105	102	104	161	161	127	127	90	83
8	84	86	59	59	66	66	115	113	50	50	46	46	64	64	66	66	62	64	III	111	95	95	66	62
9	41	4 I	25	25	32	32	60	55	30	30	11		25	25	32	29	24	26	61	58	45	45	42	38
10	7	7	7	7	8	8	18	16	8		0	-				0		4	27	24	13	13	26	22
11	2	2	\bigcirc	-	0	\bigcirc	-	-	\bigcirc	0	11	11	-	\bigcirc	7	7	\bigcirc	0	\bigcirc	\bigcirc	0	\bigcirc	17	10
Noon.	0	\bigcirc	4	7	2 I	24	17	20	15	19	40	42	25	28	42	42	43	45	16	16	4	4	16	12
$13^{\text {b }}$	21	26	18	23	49	54	62	69	41	50	83	90	44	49	88	93	76	80	57	62	22	27	13	9
14	44	53	28	38	66	76	89	101	72	86	117	126	70	78	116	123	86	95	77	84	34	44	8	6
15	58	69	22	34	82	94	125	140	102	12 I	152	161	103	111	139	148	94	106	87	96	23	35	3	3
16	64	78	10	22	74	89	154	169	131	150	180	192	134	142	157	166	102	114	88	97	18	30	0	\bigcirc
17	62	78	10	25	68	85	183	200	155	176	204	218	158	166	165	177	121	135	88	100	34	49	9	9
18	59	75	23	40	83	102	196	215	167	188	225	239	180	190	183	195	139	153	97	109	43	60	13	1 I
19	53	69	34	51	101	120	198	217	168	189	238	252	183	193	205	217	158	172	118	130	40	57	21	19
20	51	65	35	52	96	118	202	224	153	174	227	241	187	199	212	224	169	183	133	145	45	62	26	22
21	44	58	33	4^{8}	100	12	213	235	146	167	201	215	183	195	213	225	171	185	138	150	65	82	32	28
22	38	49	38	53	100	122	211	233	147	166	191	205	172	184	207	219	177	191	158	170	63	80	36	34
23	45	56	45	60	99	12 I	209	231	144	163	176	190	166	178	214	226	175	187	171	183	60	80	43	43
Means corrected for Temperature	$\} 66$		47			$3 \cdot 4$		$5 \cdot 6$	11	4°				$3 \cdot 3$										

Table VI.-Monthly Mean Temperature at each Hour of the Day within the box inclosing the Horizontal Force Magnet.

1910.													
$\begin{gathered} \text { Hour, } \\ \text { Greenwich } \\ \text { Civil } \\ \text { Time. } \end{gathered}$	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.	For the Year.
Midn.	$65^{\circ} 9$	$66^{\circ} \mathrm{I}$	$66^{\circ} 7$	$67^{\circ} \cdot 1$	$67^{\circ} \cdot 2$	$67^{\circ} 4$	$67^{\circ} \cdot 1$	$67^{\circ} \cdot 2$	$67^{\circ} \cdot$	$67^{\circ} \cdot 2$	$66^{\circ} 4$	$67^{\circ} 3$	$66 \cdot 87$
$\mathrm{l}^{\text {mid }}$	65.6	$66 \cdot 1$	$66 \cdot 6$	67.0	$67 \cdot 1$	$67 \cdot 3$	67°	$67 \cdot 1$	$66 \cdot 9$	$67 \cdot 1$	$66 \cdot 3$	$67 \cdot 2$	$66 \cdot 78$
2	65.5	$66 \cdot$	$66 \cdot 5$	$66 \cdot 9$	67.0	$67 \cdot 2$	67.0	67.1	$66 \cdot 9$	$67^{\circ} 0$	$66 \cdot$ I	$67 \cdot 1$	$66 \cdot 69$
3	65.4	$65 \cdot 9$	$66 \cdot 3$	$66 \cdot 8$	66.9	67.2	$66 \cdot 9$	$67^{\circ} \mathrm{O}$	$66 \cdot 8$	$67^{\circ} 0$	65.9	$67 \cdot 0$	$66 \cdot 59$
4	$65 \cdot 3$	65.8	$66 \cdot 2$	$66 \cdot 6$	$66 \cdot 8$	$67 \cdot 1$	$66 \cdot 9$	$66 \cdot 9$	$66 \cdot 7$	$66 \cdot 9$	$65 \cdot 8$	$66 \cdot 9$	$66 \cdot 49$
5	$65 \cdot 3$	65.7	$66 \cdot 0$	$66 \cdot 5$	$66 \cdot 7$	67°	$66 \cdot 8$	$66 \cdot 8$	$66 \cdot 7$	$66 \cdot 8$	65.7	$66 \cdot 8$	66.40
6	$65 \cdot 2$	65.6	65.9	$66 \cdot 4$	$66 \cdot 6$	66.9	$66 \cdot 7$	$66 \cdot 8$	$66 \cdot 6$	$66 \cdot 8$	$65 \cdot 6$	$66 \cdot 8$	$66 \cdot 32$
7	$65^{\prime} 1$	65.6	65.8	$66 \cdot 3$	$66 \cdot 5$	$66 \cdot 8$	$66 \cdot 6$	$66 \cdot 7$	$66 \cdot 5$	$66 \cdot 7$	65.6	$66 \cdot 8$	$66 \cdot 25$
8	$65 \cdot 2$	$65 \cdot 6$	$65 \cdot 8$	$66 \cdot 2$	$66 \cdot 4$	$66 \cdot 7$	$66 \cdot 6$	$66 \cdot 7$	$66 \cdot 5$	$66 \cdot 7$	$65 \cdot 6$	$66 \cdot 9$	$66 \cdot 24$
9	$65^{1} 1$	$65 \cdot 6$	65.8	$66 \cdot 1$	66.4	$66 \cdot 7$	$66 \cdot 6$	$66 \cdot 6$	$66 \cdot 5$	$66 \cdot 6$ $66 \cdot 6$	$65 \cdot 6$ $65 \cdot 6$	$66 \cdot 9$ $66 \cdot 9$	$66 \cdot 21$ $66 \cdot 22$
10	65.1	65.6	65.8	$66 \cdot 2$	66.4	$66 \cdot 7$	$66 \cdot 6$	$66 \cdot 7$ $66 \cdot 7$	$66 \cdot 5$ $66 \cdot 4$	$66 \cdot 6$ $66 \cdot 7$	$65 \cdot 6$ 65.6	$66 \cdot 9$ $66 \cdot 8$	$66 \cdot 22$ $66 \cdot 23$
11	65.1	$65 \cdot 6$	$65 \cdot 8$	$66 \cdot 3$	$66 \cdot 4$	$66 \cdot 7$ 66.8	$66 \cdot 6$	$66 \cdot 7$	$66 \cdot 4$	$66 \cdot 7$ 66.7	$65 \cdot 6$ $65 \cdot 6$	$66 \cdot 8$ $66 \cdot 9$	$66 \cdot 23$ $66 \cdot 30$
Noon.	65.1	65.7	$65^{\circ} 9$	$66 \cdot 4$	$66 \cdot 6$	$66 \cdot 8$	$66 \cdot 7$	$66 \cdot 7$ $66 \cdot 9$	$66 \cdot 5$ $66 \cdot 6$	$66 \cdot 7$ $66 \cdot 9$	$65 \cdot 6$ 65.8	$66 \cdot 9$ $66 \cdot 9$	$66 \cdot 30$ $66 \cdot 45$
$13^{\text {h }}$	$65 \cdot 3$	$65 \cdot 8$	$66 \cdot 0$	$66 \cdot 6$	$66 \cdot 8$	67.0	$66 \cdot 8$	$66 \cdot 9$	$66 \cdot 6$ $66 \cdot 8$	$66 \cdot 9$ $67 \cdot 0$	$65 \cdot 8$ $66 \cdot 0$	$66 \cdot 9$ 670	$66 \cdot 45$ $66 \cdot 61$
14	$65 \cdot 5$	$66 \cdot 0$	$66 \cdot 2$	$66 \cdot 8$	$67 \cdot 0$	67.1	$66 \cdot 9$	$67^{\circ} \mathrm{O}$	$66 \cdot 8$ $66 \cdot 9$	$67 \cdot 0$ $67 \cdot 1$	$66 \cdot 0$ $66 \cdot 1$	$67 \circ$ 67.1	$66 \cdot 61$ 66.70
15	$65 \cdot 6$	$66 \cdot 1$	$66 \cdot 3$	$66 \cdot 9$	$67 \cdot 2$	$67 \cdot 1$	$66 \cdot 9$	$67 \cdot 1$ 67.1	$66 \cdot 9$ $66 \cdot 9$	$67 \cdot 1$ 67.1	$66 \cdot 1$ $66 \cdot 1$	$67 \cdot 1$ 67.1	$66 \cdot 70$ 66.73
16	65.7 65.8	$66 \cdot 1$ $66 \cdot 2$	$66 \cdot 4$	$66 \cdot 9$ $67 \cdot 0$	$67 \cdot 2$ 67.3	$67 \cdot 2$ $67 \cdot 3$	$66 \cdot 9$ $66 \cdot 9$	$67 \cdot 1$ $67 \cdot 2$	$66 \cdot 9$ 670	67.1 67.2	$66 \cdot 1$ $66 \cdot 2$	$67 \cdot 1$ $67 \cdot 1$	$66 \cdot 73$ 66.81
17 18	65.8 65.8	$66 \cdot 2$ $66 \cdot 3$	$66 \cdot 5$ $66 \cdot 6$	$67 \cdot 0$ $67 \cdot 1$	$67 \cdot 3$ $67 \cdot 3$	$67 \cdot 3$ $67 \cdot 3$	$66 \cdot 9$ 67.0	$67 \cdot 2$ 67.2	67.0 67.0	$67 \cdot 2$ $67 \cdot 2$	$66 \cdot 2$ $66 \cdot 3$	67.0	66.84
188	$65 \cdot 8$ 65.8	$66 \cdot 3$ $66 \cdot 3$	$66 \cdot 6$ $66 \cdot 6$	$67 \cdot 1$ $67 \cdot 1$	$67 \cdot 3$ $67 \cdot 3$	$67 \cdot 3$ $67 \cdot 3$	67° 67°	67.2 67.2	67.0 67.0	$67 \cdot 2$	$66 \cdot 3$	67.0	66.84
19 20	$65 \cdot 8$ $65 \cdot 7$	$66 \cdot 3$ $66 \cdot 3$	$66 \cdot 6$ $66 \cdot 7$	$67 \cdot 1$ 67.2	$67 \cdot 3$ 67.3	$67 \cdot 3$ 67.3	67.0 67.1	67.2	67°	$67 \cdot 2$	$66 \cdot 3$	$66 \cdot 9$	$66 \cdot 85$
21	$65 \cdot 7$ $65 \cdot 7$	$66 \cdot 3$ 66.2	$66 \cdot 7$ 66.7	67.2 67.2	$67 \cdot 3$ $67 \cdot 3$	67.3 67.3	$67 \cdot 1$	67.2	$67^{\circ} 0$	$67 \cdot 2$	$66 \cdot 3$	$66 \cdot 9$	$66 \cdot 84$
22	$65 \cdot 6$	$66 \cdot 2$	$66 \cdot 7$	$67 \cdot 2$	67.2	673	$67 \cdot 1$	67.2	67°	$67 \cdot 2$	$66 \cdot 3$	$67 \cdot 0$	$66 \cdot 83$
23	$65 \cdot 6$	$66 \cdot 2$	$66 \cdot 7$	$67 \cdot 2$	$67 \cdot 2$	67.3	$67 \cdot 1$	$67 \cdot 2$	$56 \cdot 9$	$67 \cdot 2$	$66 \cdot 4$	67.1	$66 \cdot 84$

Table VII-Mean Vertical Magnetic Force (diminished by a Constant) for each Civil Day.
(Each result is the mean of 24 hourly ordinates from the photographic register, expressed in terms of the whole Vertical Force, the unit in the table being -oooov of the whole Vertical Force. The letters u and c indicate respectively values uncorrected for, and corrected for temperature.)
1910.

At the end of the year the magnet was readjusted, thus breaking the continuity of the values.

Table VIII.-Mean Temperature for each Civil Day within the box inclosing the Vertical Force Magnet.

Table XI.-Mean Magnetic Declination, Horizontal Force, and Vertical Force, in each Month.
(The results for Horizontal Force and Vertical Force are corrected for Temperature.)

Month, 1910.	Declination Weist in Are.	Horizontal Force in terns of the whole Horizontal Force (diminished by a	VRrtioal Force in terms of the whole Vertical Force (diminished by a		HORIZONTAL FOROE (diminished by a Constant)	vertical Force (diminished by a Constant)
				in terms of C. G. S. Unir.		
January	-15.45*8	286	935	2469	530	4058
February	15.44.1	1161	897	2377	2152	3893
March,	15.43 .9	1059	915	2367	1963	3971
April.....................	15.43 .0	1031	917	2318	1911	3980
May	15.41 .2	1075	956	2221	1992	4149
June....	$15.41 \cdot 4$	1178	1077	2232	2183	4674
July	$15.40 \cdot 5$	1179	1084	2183	2185	4704
August	$15.40 \cdot 8$	1200	1123	2199	2224	4874
September	15.39.6	1113	1061	2135	2063	4605
October...................	$15.38 \cdot 2$	1062	1036	2059	1968	4496
November	15.38.8	748	892	2092	1386	3871
December	15.37.3	720	866	2011	1334	3758
Means	$1{ }^{\circ} \cdot 4^{\prime} \cdot 2$	\ldots	2222	\ldots
Number of Column......	I	2	3	4	5	6

The units in columns 2 and 3 are cooor of the whole Horizontal and Vertical Forces respectively, of which the mean values for the year in C. G. \mathbb{S}. units are 0.18532 and $0^{\circ} 43399$ respectively.

Horizontal Force.-At the end of January and again at the end of the year experiments were made for determination of the angle of torsion, thus breaking the continuity of the values

Vertical Force, -At the end of the year the magnet was readjusted, thus breaking the continuity of the values.

Table XII.-Mean Diurnal Infqualities of Magnetic Declination, Horizontal Force, and Vertical Force, for the Year 1910.
(Each result is the mean of the twelve monthly mean values, the annual means for each element being diminished by the smallest hourly value. The results for Horizontal Force and Vertical Force are corrected for temperature.)

Hour, Greeuwich Civil Time.	Inequality of			Inequality of		
	$\begin{gathered} \text { Declunation } \\ \text { Wrast } \\ \text { in Arc. } \end{gathered}$	Horizontal Force in terms of the whole Horizontal Force.	Vhrtical Force in terms of the whole Vertical Force	$\begin{gathered} \text { Dechination } \\ \text { expressed as } \\ \text { WBSTERLY Force } \end{gathered}$	Horizontal forca	vertioal force
				in terms of C. G. S. Unir.		
Midnight.	\bigcirc	143.9	$25^{\circ} 1$	34°	$266 \cdot 7$	108.9
$1^{\text {b }}$	0.88	1394	18.7	47.4	$258 \cdot 3$	81.2
2	$1 \cdot 10$	133.4	15.8	59.3	$247 \cdot 2$	68.6
3	${ }_{1} \cdot 17$	1315	$16 \cdot 0$	$63 \cdot 1$	243.7	69.4
4	1.04	1337	17^{1}	$56 \cdot 1$	$247 \cdot 8$	74^{2}
5	$\bigcirc \cdot 74$	136.9	18.1	39.9	2537	$78 \cdot 6$
6	$\bigcirc \cdot 54$	127.3	193	29^{1}	235.9	83.8
7	0.26	$105 \% 8$	22.4	$14^{\circ} \mathrm{O}$	$196 \cdot 1$	$97^{\circ} 2$
8	$0 \cdot 00$	71.0	22.5	$0 \cdot 0$	131.6	$97 \cdot 6$
9	0.45	$32 \cdot 1$	18.7	24.3	59.5	$81 \cdot 2$
10	I 94	$6 \cdot 7$	10.2	104.6	12.4	443
11	4.04	$\bigcirc \cdot 0$	3.9	217.8	$0 \cdot 0$	16.9
Noon.	$5 \cdot 74$	19^{1}	$0 \cdot 0$	309.4	354	$0 \cdot 0$
$13^{\text {h }}$	6.60	$50 \cdot 2$	$7 \cdot 2$	355.8	93.0	31^{12}
14	$6 \cdot 35$	73.3	19.1	$342 \cdot 3$	135.8	82.9
15	5-18	$90^{\prime} 7$	324	279.2	$168 \cdot 1$	$140 \cdot 6$
16	3.95	1016	41^{1}	2129	188.3	178.4
17	2.89	1157	47°	155.8	214.4	204*
18	$2 \cdot 10$	128.9	49°	113.2	238.9	212.7
19	1.41	138.0	$46 \cdot 7$	$76 \cdot 0$	255%	202.7
20	$\bigcirc \cdot 94$	139.9	$43^{1} 1$	$50 \cdot 7$	2593	187°
21	0.64	$140 \cdot 0$	38.8	34.5	2594	168.4
22	$\bigcirc \cdot 37$	139.7	34°	$19^{\circ} 9$	$258 \cdot 9$	1476
23	$0 \cdot 39$	$140 \cdot 7$	29.2	21.0	$260 \cdot 7$	126.7
Means	2:06	101.6	24.8	$110 \cdot 8$	188.4	$107 \cdot 7$
Number of Column	1	2	3	4	5	6

The units in columns 2 and 3 are -00001 of the whole Horizontal and Vertical Forces respectively, the mean values of which for the year in C. G. S. units are 0.1853^{2} and 0.43399 respectively.

Table XIII.-Diurnal Range of Declination and Horizontal Force, on each Civil Day, as deduced from the Twenty-four Hourly Measures of Ordinates of the Photographic Registers. (The Declination is expressed in minutes of arc ; the unit for Horizontal Force is $\cdot \circ 000$ of the whole Horizontal Force. The results for Horizontal Force are corrected for temperature.)																								
1910.																								
(Day of	January.		February.		March.		April.		May.		June.		July.		August.		September:		October.		November.		December.	
	Dec.	H.F.	Dec.	H.f.	Dec.	H.F.	Dee.	H.F.	Dec.	F.	Dec.	H.F.	Dee.	н.F.	Dec.	H.F.	Dec.	H.F.	Dec.	H.F.	Dec.	H.F.	Dec.	
${ }_{1}^{2}$	$9 \cdot 2$		$4 \cdot 6$		$7 \cdot 2$	146	$10 \cdot 9$	532	6.1	267	$10 \cdot 1$	270	5.4	257	13.2	175	$10 \cdot 3$	218	$10 \cdot 5$	143	5.9	148	\% 6	76
2	$5{ }^{\circ}$		$5 \cdot 6$	165	$7 \cdot 2$	108	$9 \cdot 2$	311	$8 \cdot 6$	280	$10 \cdot 6$	284	$5 \cdot 5$	231	10.2	289	$8 \cdot 7$	260	11.2	379	$7 \cdot 8$	355	8.8	153
3	43	\cdots	$6 \cdot 8$	150	57	138	103	226	$11 \cdot 0$	233	$11 \cdot 5$	192	$9 \cdot 8$	252	11°	347	$11 \cdot 2$	301	9.0	221	4.5 8.1	110	7.8	137
4	$6 \cdot 5$	\ldots	12.2	172	$12 \cdot 7$	209	$9 \cdot 9$	358	$10 \cdot 1$	176	97	247	114	366	8.9	384	10.9	201	12.4	236	$8 \cdot 1$	209	$6 \cdot 6$	156
5	$5 \cdot 6$		$6 \cdot 3$	186	6.4	118	$9 \cdot 6$	261	$8 \cdot 3$	233	8.7	271	$10 \cdot 1$	405	$10 \cdot 5$	278	10.6	207	$11 \cdot 7$	251	$6 \cdot 7$	189	6.9	97
6	59	\cdots	$5{ }^{\circ}$	88	$10 \cdot 1$	158	9.5	252	$8 \cdot 7$	197	10'9	289	$8 \cdot 8$	245	10.6	221	13.0	237	18.7	435	$7 \cdot 5$	174	73	12
7	$5 \cdot 7$	61	$5{ }^{\circ}$	66	11.8	179	10.2	169	9.1	223	$9 \cdot 1$	287	9.7	346	10.4	241	11-8	320	7.5	197	$4 \cdot 3$	226	$6 \cdot 8$	93
8	3.3	6 I	3.6	77	$9 \cdot 6$	122	9.9	181	74	167	15%	297	$8 \cdot 8$	354	$9 \cdot 6$	237	$9 \cdot 7$	263	$1{ }^{1} 1$	202	9.3	222	$7{ }^{\circ}$	144
9	4.9	149	$6 \cdot 3$	83	$8 \cdot 1$	118	11.7	237	8.9	245	78	274	$8 \cdot 8$	210	12.6	244	8.9	221	73	165	8.0	175	4.4	60
10	$4 \cdot 8$	142	4.8	92	7.2	136	$12 \cdot 1$	277	$6 \cdot 8$	203	$9 \cdot 3$	271	$8 \cdot 0$	39^{2}	$16 \cdot 5$	560	$8 \cdot 5$	185	113	178	8.0	176	$3 \cdot 6$	71
11	2.4	70	$3 \cdot 6$	141	8.9	170	$1{ }_{1} \cdot$	274	$6 \cdot 8$	212	93	366	$10 \cdot 1$	232	77	182	$10^{\circ} 0$	160	10\%	192	$5{ }^{\circ}$	349	4.9	90
12	\ldots	68	$2 \cdot 6$	147	7.9	169	114	331	8.2	286	75	O	$8 \cdot 6$	244	$8 \cdot 2$	242	$8 \cdot 6$	219	11°	139	$5 \cdot 0$	114	3.3	107
13			$5 \cdot 1$	133	100	105	II'1	294	10.0	419	9%	354	$10 \cdot 5$	207	7.2	198	$9 \cdot 9$	89	8.4	346	5.3	150	$7{ }^{7} \mathrm{O}$	331 132 3
14	$5 \cdot 6$	129	$7 \cdot 6$	140	$11^{\circ} \mathrm{O}$	295	109	234	$6 \cdot 5$	189	101	246	$7 \cdot 8$	272	13.3	274	$8 \cdot 1$	182	$8 \cdot 0$	267	$6 \cdot 3$	105	$6 \cdot 1$	132
15	$5{ }^{\circ}$	145	$6 \cdot 5$	180	97	129	$10 \cdot 1$	180	7.8	190	1	249	$8 \cdot 3$	199	8.7	172	$7 \cdot 2$	249	$7 \cdot 1$	194	$6 \cdot 2$	144	9.4	367
16	$5 \cdot 7$	147	6.2	86	5		$8 \cdot 4$	197	7.8	204	$6 \cdot 6$	201	$10 \cdot 6$	257	$7 \cdot 4$	129	8.0	232	5.5	129	-	202	5.2	92
17	8.9	335	10.4	306			8.2	189	$6 \cdot 9$	261	$10 \cdot 1$	269	$8 \cdot 3$	227	10.8	199	6.7	145	$6 \cdot 5$	136	118	280	3.7 8.8	94
18	$6 \cdot 8$	117	137	317	8.7	158	$16 \cdot 8$	495	9.5	241	9.6	252	5.4	278	14.1	276	$6 \cdot 3$	108	9	181	13.5 9 9	298	8.8	219 153
19	4.9	150	$5 \cdot 1$	147	$7 \cdot 8$	142	8.0	336	11	205	$9 \cdot 8$	243	ro'9	226	13.2	345	8.5	155	$21^{2 \cdot 2}$	435 233	9.5 9.8	258	7.6	153 284
20	45	191	10%	246	17°	311	$7 \cdot 8$	190	11°	224	197	399	8.9	209	${ }^{9} 9$	284	9.7 9.9	183	12.0	233	9.8	228	$4 \cdot 6$	284 118
21	$7 \cdot 6$	177	$9{ }^{\circ}$	276	13.9	195	$7 \cdot 8$	249	8.6	110	9.9	422	10.3 10.2	118	14.1 18.0	259	9.9 13.8 108	348	140	${ }_{272}$	7.5	202	$6 \cdot 8$	
22	13.9	306	$7{ }^{\circ}$	162	8.7	207	$1{ }^{1084}$	218	115 1.9	188	9.2	295	10.2 9.2	260	18.0 9.6	720 342	13.8	264	$\begin{array}{r}9 \\ 10 \\ 10 \\ \hline 0\end{array}$	272 317	7.5			353
23	$10 \cdot 8$	145	$8 \cdot 1$	132	$8 \cdot 6$	134	$16 \cdot 5$	410	11.9	242	7.6 10.7	340 277	9.2 9.6	273	9.6 12.0	342	10.8 13 13	3307	10° 8.7 18	317	8.4	191	5.8	149
24	18.0	340	$5 \cdot 3$	210	9.0	155	11.0	290	159	257	$10 \cdot 7$	277	9.6 12.6	243	12.0 8.4	234	13.7 13.7	347	${ }_{11} \times$	345	5.4	93 140 10	8.2	205
25	13.2	362	$10 \cdot 5$	360	$9 \cdot 9$	196	$10^{\circ} 9$	257	14.7	391	107	413	12.6 8.7	243	8.4 8.7	284	13 9 9	385	115 11.3	345	7.4 8.8	140	4.5	396
26	12.6	26	5.6	122	10.2	239	$8 \cdot 2$	210	9.4	342	107	405	$8 \cdot 7$	212	8.7	244	9.6 9	237 361	1153	325 409	6.2	154	5.0	
27	5.8	124	7.2	89	20.6	301	$15^{\circ} 5$	508	9.2	249	$\begin{array}{r}9.9 \\ 10.8 \\ \hline\end{array}$	327	9.8	179	9.5 12.6	279	9.4 9 9	270	6.8	473	8.0	154	117	153 272
28 29	5.2 6.1	116	$10 \cdot 6$	144	$2{ }^{1} 6$	811	8.5 9.3	371	8.5	287	10.8	277	6.4 117	231	$1{ }_{12} 1$	505	20.6	380	8.9	220	12.5	259	$9 \cdot 3$	235
30	5.6	119			77	168	7.2	302	9.5	269	74	187	8.0	252	9.2	312	74	305	8.8	284	5.3	168	4.5	
31	$5 \cdot 6$				23.8	280			12.8	322			$7{ }^{\circ}$	199	73	325			5.5	245			$5{ }^{\circ}$	
Means	$7 \circ$	173	$6 \cdot 9$	164	10'8	207	10^{\prime}	293	$9 \cdot 5$	243	10.2	295	9.1	261	$10 \cdot 8$	306	$10 \cdot 1$	24	10.2	260	7'6	197	6'5	170

The mean of the twelve monthly values is, for Declination 9.09, and for Horizontal Force $234^{\circ} 5$.

Table XIV.-Monthly Mean Diurnal Range, and Sums of Hourly Deviations from Mean, for Declination, Horizontal Force, and Vertical Force, as deduced from the Monthly Mean Diurnal Inequalities, Tables II., V., and IX.
(The Deslination is expressed in minutes of arc: the units for Horizontal Force and Vertical Force are 00001 of the whole Horizontal and Vertical Forces respectively. The results for Horizontal Force and Vertical Force are corrected for temperature.)

Month, rgro.	Difference between the Greatest and Least of the 24 Hourly Values.			Sum of the 24 Hourly Deviations from the		
	Declination.	Horizontal Force.	Vertical Force.	Declination.	Horizontal Force.	Vertical Force.
January	$5 \cdot 5$	125	24	$30^{\prime} \cdot 8$	610	191
February.	$5 \cdot 5$	89	35	31.4	501	231 398
March..	$8{ }^{\circ}$	135	52	52.2 46.8	816 1476	398
April..	$\stackrel{9}{8 .}$	235 189	72 84	48.3	1476 1183	317 417
May ...	9.2	189 252	69	52.7	1536	312
July ...	8.4	199	55	$44^{\circ} 4$	1318	272
August...	8.9	226	67	52.0	1448	348
September	$7 \cdot 8$	191	51	47.3	1228	255
October....	77	188	53	$42 \cdot 6$	1197	330
November.	$6 \cdot 2$	130	24	30.1	848 555	157 214
December...	$5 \cdot 1$	92	30	25.4	555	214
Means ...	$7 \cdot 46$	170*9	$51 / 3$	$4^{\prime} \cdot 00$	10597	$290 \cdot 25$

Table XV.--Values of the Co-efficients in the Periodical Expression $\mathrm{V}_{t}=m+a_{1} \cos t+b_{1} \sin t+a_{2} \cos 2 t+b_{2} \sin 2 t+a_{3} \cos 3 t+b_{3} \sin 3 t+a_{4} \cos 4 t+b_{4} \sin 4 t$ (in which t is the time from Greenwich mean midnight converted into arc at the rate of 15° to each hour, and V_{t} the mean value of the magnetic element at the time t for each month and for the year, as given in Tables II., V., IX., and XII., the values for Horizontal Force and Vertical Force being corrected for temperature).									
The values of the co-efficients for Declination are given in minutes of arc : the units for Horizontal Force and Vertical Force are oooor of the whole Horizontal and Vertical Forces respectively.									
Month, 1910.	m	a_{1}	b_{1}	a_{2}	b_{2}	a_{3}	b_{3}	a_{4}	b_{4}
	Deglination West.								
January	${ }^{2} 13$	-1.72	$-0.6{ }_{1}$	+ $0^{\prime} 22$	+ I.07	- $0^{\circ} 3$	$-0^{6} 17$	+ $0^{6} 30$	$+0^{\circ} 25$
February.	2.16	- 1.78	-0.65	+0.43	+ 0.92	-0.46	-0.17	+0.04	+0.26
March....	$2 \cdot 31$	- 2.88	-1.38	+0.81	+1.23	-0.54	-0.61	+0.48	+0.25
April.	3.41	- 1.90	- 1.62	+ 1.12	+176	-0.73	-0.88	+0.33	+0.29
May	3.41	- 194	- 2.02	+ I. 14	+1.42	- 0.64	-0.28	+0.01	-0.03
June.	4.30	- 170	-2.59	+1.60	+1.55	-0.49	-0.05	+0.09	-0.04
July ..	373	- 134	-2.27	+1.30	+1.50	-0.53	-0.31	-0.01	+0.09
August.	$3 \cdot 04$	-2.38	- 1.69	+1.61	+1.50	-0.62	-0.62	+0.03	+ 0.04
September.	2.14 2.85	- 2.47	-0.86	+ 1.64	+1.02	-0.82	-0.46	+0.20	$+0.21$
October....	2.85 2.57	-2.45	-0.08	+ 0.88	+1.64	-0.39	-0.56	+0.40	+0.19
November.	2.57 2.58	-1.80	+0.03	+0.50	+1.19	-0.54	-0.20	+0.30	+0.22
December	2.58	-1.65	+0.32	+0.13	+ 0.94	-0.20	+ 0.06	+0.18	+ 019
For the Year	2.06	-2.00	-1.12	+0.95	+ i.3I	-0.53	-0.35	$+0.19$	+0.16
	Horizontal Force.								
January.	$66 \cdot 2$	+ 217		-31.8	+ 14.6	+110	- 10.2	+ 2.5	+67
February.	47'1	+23.5	+15.1	- 14.1	+ ${ }^{1}$	+ $1 \cdot 9$	- 12.2	+3.3	+ 74
March...	93.4	+ 50.0	- 3.7	- 17.6	+16.2	+ $2 \cdot 2$	- 14.1	+ 1.0	+ 8.2
April..	155.6	+ 89.2	- 32.8	-. 347	+11.0	+11.0	- 13.6	+0.3 $+\quad 37$	+ 4.1
May	$114^{\circ} \mathrm{O}$	+60.9	- 44.5	- 29°	+13.4	+ 78	- 43	+37 $+\quad 5$	+ 1.0
June.	1467	+ 74.8	-61.2	- 36.0	+26.1	- 5.3	- 8.0	+ $5 \cdot 5$	+ 38 $+\quad 3$.
July .	123.3	+ 74.5	- 37.8	- 29.8	+115	+ 0.9 $+\quad .9$	- 73	+3.3 $+\quad$	+ 30 +
August.	148.7	+85.1	-41.1	-22.2	+2111	- 0.4	- 18.8	+3.9 $+\quad .9$	+ 4.6 +7.
September.	125.2	+ 75.7	- 22.4	- 16.2	+16.3	- 37	- 15.9	+ 4.1 $+\quad 10$.	+73 $+\quad 7$
October....	123.2 70.8	+ 710	+150	- 22.8	+ 13.8 $+\quad 76$	$+\quad 39$ $+\quad .7$	- 22.6		$+\quad 7.2$ $+\quad .5$
November	$70 \cdot 8$	+ 40.1	+290	- 19.9	+ 7.6 $+\quad 3.3$	$+\quad 57$ $+\quad .5$	12.2 $-\quad 8.3$	+ 2.6 $+\quad .1$	+ 9.5 $+\quad 3.3$
December.	35.5	$+17.2$	$+29^{\circ}$	- 94	-3.3	+ 4.5	-83	+ 7.1	+ 33
For the Year.........	101.6	$+570$	-11.8	-23.6	+ 127	+3.6	-12.3	+ 3.2	+ 5.5
	Vertical Force.								
January ..	$10 \cdot 3$	$+3 \cdot 1$	- 10.0	- 3.6	- ${ }^{+1}$	+ 2.4	- 0.1	- I•I	-1.0
February.	18.1	+ 7°	- 11.2	- $5 \cdot 8$	- $2 \cdot 3$	+ 2.7	- 0.1	- 16	- 0.5
March .	22.4	+ 55	-22.6	- 8.6	- 3.1	+ 5.8	- 0.6	- 1.5	- 0.3
April.	$39 \cdot 7$	+114	- 15.5	- 16.1	- 26	+ 76	1 $+\quad 18$	- 3.1	- 1.4
May	$50 \cdot 6$	+19.6	- 15.9	-179	- 4.8	+ 6.4	+ 03	- 3.2	- 1.2
June	38.9 29.7	+14.7 +14.	- 9.2	-16.3	$-\quad 3.9$ $-\quad 2.6$	+3.4 $+\quad 4$	1.0 $+\quad 0.5$	- 0.5	+ $0 \cdot 9$
July	$29 \cdot 7$	+11.8	- 10.1	- 124	- 26	+ 4.4	+ 0.5 $+\quad 20$	+ 0.1	- I'I
August....	$33^{\circ} \mathrm{I}$ 26.0	$+\quad 43$ $+\quad 5.2$	-176 -113	-159 -118	- 1.3	+6.9 $+\quad 69$	1 $+\quad 2.0$ $-\quad 0.4$	- 2.0 $-\quad 1.6$	$-\quad 0.5$ $-\quad 0.2$
October...	20.0		- 18.6	- 12.3	- 15	+ ${ }^{\text {\% }}$	+ 12	- 0.7	+ 0.3
November	10.7	+ 0.1	- 8.1	- $5 \cdot 6$	- 0.2	+ 2.6	$+\quad 03$	-1.0	+ 0.4
December.	13.8	- 0.9	- 12.8	- 43	- 2.1	+ 0.9	- 1.2	- 1.1	00
For the Year..	$24 \cdot 8$	+ 65	- 13.6	- 10.9	- 24	+ 4.6	+ 0.4	-14	-0^{4}

Table XVI.-Values of the Co-efficients and Constant Angles in the Periodical Expressions

$$
\begin{aligned}
& \mathrm{V}_{t}=m+c_{1} \sin (t+a)+c_{2} \sin (2 t+\beta)+c_{3} \sin (3 t+\gamma)+c_{4} \sin (4 t+\delta) \\
& \mathrm{V}_{t^{\prime}}=m+c_{1} \sin \left(t^{\prime}+a^{\prime}\right)+c_{2} \sin \left(2 t^{\prime}+\beta^{\prime}\right)+c_{3} \sin \left(3 t^{\prime}+\gamma^{\prime}\right)+c_{4} \sin \left(4 t^{\prime}+\delta^{\prime}\right)
\end{aligned}
$$

(in which t and t^{\prime} are the times from Greenwich mean midnight and apparent midnight respectively, converted into arc at the rate of 15° to each hour, and $\mathrm{V}_{t}, \mathrm{~V}_{t}$, the mean value of the magnetic element at the time t or t^{\prime} for each month and for the year, as given in Tables II., V., IX., and XII., the values for Horizontal Force and Vertical Force being corrected for temperature).

The values of the co-efficients for Declination are given in minutes of are : the units for Horizontal Force and Vertical Force are -0000 of the whole Horizontal and Vertical Forces respectively.

Month, I910.	m	c_{1}	α	a^{\prime}	c_{2}	β	β^{\prime}	c_{3}	γ	γ^{\prime}	c_{4}	δ	δ^{\prime}
	Declination West.												
January	$2 \cdot 13$	1.82	250.19	252.38^{\prime}	1.09	11. 29	$16^{\circ} 7$	\bigcirc	2470. -	253.58°	0.40	$50^{\circ} 18^{\prime}$	59.35
February.	$2 \cdot 16$	1.90	250.3	253.32	1.02	25.16	32.15	0.49	249.50	260. 18	0.26	9. 6	23. 4
March.	231	3.19	244. 22	246.34	147	33.22	37.46	0.82	221.24	228. 1	0.54	63. 7	71.56
April.	341	2.50	229.37	229.41	2.08	32. 27	32. 36	$1 \cdot 15$	219.42	219.55	$\bigcirc \cdot 43$	${ }^{48.25}$	48.43
May	$3 \cdot 11$	2.80	223.49	222.57	1.82	38.37	36. 54	0.70	246.29	243. 54	0.03	164.3	160.36
June	430	3.10	213.17	213.21	2.23	45.54	46. 1	0.49	264. 2	264.13	- 10	115.18	115.33
July	$3 \cdot 73$	2.63	210.30	211.51	1.98	41. 4	43.47	$0 \cdot 61$	239.51	243.55	$0 \cdot 09$	354.30	359. 56
August.	3.04	2.92	234.39	235.38	2.20	47. 3	49. 1	0.88	225.9	228. 7	$\bigcirc \cdot 05$	39. 9	43. 6
September	${ }^{2} 14$	2.62	250.43	249.32	$1 \cdot 93$	58. 11	55.48	$\bigcirc \cdot 94$	240.54	237.20	0.29	44.18	39. 32
October.	2.85	2.45	268. 10	264.42	$1 \cdot 86$	28.13	21.18	$0 \cdot 68$	214.55	204. 32	\bigcirc	63.46	49. 55
November	2.57	1.80	270. 57	267. 10	1.29	22. 3^{8}	15.4	0.58	250.15	${ }^{238.54}$	0.37	54. 10	39. ${ }^{2}$
December	2.58	$1 \cdot 68$	280. 51	279.45	0.95	7.59	5.47	$0 \cdot 21$	287. 5	283.47	$0 \cdot 26$	42.35	38.11
For the Year	2.06	2.29	240.47	240.47	1.62	35.52	35.52	$\bigcirc \cdot 64$	236.25	236. 25	0.25	50. 59	50. 59
	Horizontal Force.												
January	66.2	25.5	58.12	60.31	35°	294.40	299. 18	15°	132.56	139. 54	$7 \cdot 1$	20. 8	29. 25
February	47*1	27.9	57.16	60.45	14.7	286. 7	293. 6	12.4	171. 5	181.33	$8 \cdot 1$	23.53	37.51
March	934	$50 \cdot 1$	94.13	96.25	23.9	312.44	317. 8	$14^{2} 2$	171.15	177. 5^{2}	$8 \cdot 2$	7.17	16. 6
April	155.6	95'1	IIO. 9	110. 13	36.4	287.39	287.48	17.5	140.49	141. 2	$4 \cdot 1$	4. 3	4. 21
May	$114{ }^{\circ}$	75.4	126. 11	125.19	319	294.45	293. 2	8.9	118. 57	116.22	3.8	74.37	71.10
June.	146.7	$96 \cdot 7$	129.18	129.22	44.5	305.55	306. 2	9.6	213.33	213.44	$6 \cdot 7$	55.43	55.58
July	123.3	83.5	116.53	118.14	32.0	291. 3	293.46	7.3	173. 7	177. 11	$4 \cdot 5$	47.42	53. 8
August	148.7	94.5	115.46	116.45	30.6	313.28	315.26	18.8	181. 9	184. 7	$6 \cdot 0$	40.25	44.22
September	125.2	79°	106. 29	105. 18	23.0	315. 7	312.44	16.3	192.58	189. 24	$8 \cdot 4$	29.30	24.44
October...	123.2	72.6	78. 6	74.38	26.7	301. 9	294. 14	24°	160. 50	150.27	73	10.28	356. 37
November	70.8	49.5	54.5	50.18	21.3	290.52	283. 18	134	I 54.56	143.35	$9 \cdot 8$	15.31	0. 23
December	$35^{\circ} 5$	$34^{\circ} 2$	30.10	29.4	10.0	250.59	248.47	$9 \cdot 4$	151.40	148.22	7.8	65.29	61.5
For the Year.....	1016	$58 \cdot 2$	101.41	101. 41	26.8	298. 14	298.14	12.8	163.34	163.34	$6 \cdot 4$	30.23	30.23
	Vertical Force.												
January	103	10.5	162. 53	165.12	$5 \cdot 4$	221. 2	225.40	2.4	92.48	99.46	1.5	227. 3	236.20
February.	18.1	$13^{\circ} 2$	147. 53	151. 22	6.2	248.34	255.33	2.7	91.14	101. 42	17	252. 3^{8}	266. 36
March.	22.4	$23^{\circ} 2$	166. 15	168.27	9.1	250.12	254.36	$5 \cdot 8$	95.48	102.25	1.5	259. 0	267.49
April.	39.7	$19^{\prime 2}$	143.39	143.43	16.3	260.50	260.59	$7 \cdot 8$	76.36	${ }^{76} \cdot 49$	3.4	246.15	246.33
May.	$50 \cdot 6$	25.3	129. 0	128, 8	18.6	255. 6	253.23	$6 \cdot 4$	87.0	84.25	3.4	249.54	246.27
June.	38.9	173	122.10	122.14	16.8	256. 34	256.41	3.6	73.26	73. 37	$1 \cdot$	334. 3	334. 18
July	29.7	$15^{\circ} 6$	130.34	131. 55	12.7	258. 11	260. 54	4.4	83. 11	87. 15	$1 \cdot 1$	173.25	178.51
August.	33.1	18.1	166. 10	167.9	15.9	265.23	267.21	$7 \cdot 1$	74. 1	76.59	$2 \cdot 1$	256. 1	259.58
September.	26.0	12.4	155. 2	153.51	11.8	267.19	264. 56	$6 \cdot 9$	93.2	89. 28	1.6	262.24	257.38
October.....	$20^{\circ} 0$	18.9	191.30	188. 2	12.4	263. 4	256. 9	$5 \cdot 2$	77. 3	66.40	$0 \cdot 7$	293.38	279.47
November.	$10 \cdot 7$	$8 \cdot 1$	179.17	175.30	$5 \cdot 6$	267.33	259.59	2.7	83.21	72. ${ }^{\circ}$	$1 \cdot 1$	293.26	278.18
December	13.8	12.8	184. 0	182. 54	$4 \cdot 8$	244. 28	242.16	15	144. 53	141.35	$1 \cdot 1$	270. ○	265.36
For the Year..	24.8	15.0	154.20	154.20	11.2	257.25	257.25	$4 \cdot 6$	85.11	85.11	$1 \cdot 5$	255.42	255.42

Table XVII.-Results of Observations of Magnetic Dip made in the Magnetic Pavilion in the Year igio.

Greenwich Civil Time, Igro.		Magnetic Dip.	枈	Greenwich Civil Time, гяг.	$\underbrace{\substack{\text { Sinch } \\ \text { Needle. }}}_{\text {S }}$	Magnetic Dip.		Greenwich Civil Time, 1910.		Magnetic Dip.	发
d \quad b				d h				${ }^{\text {d }}{ }^{\text {h }}$			
Jan. 3. 12	D_{1}	66. $55 . \quad 7$	E	May 2. 15	D_{1}	66. 54.55	E	Sept. 1. 13	D_{1}	66. 51. 49	
5. 12	D_{2}	66. 52. 10	E	4. 12	D_{2}	66. 51.8	E	3. 12	D_{2}	66. 51.52	B
7. 12	D_{1}	66. 54.27	E	6.12	D_{1}	66. 52. 27	E	5. 12	D_{1}	66. 52. 59	${ }^{\text {B }}$
10. 12	D_{2}	66. 52.42	E	9. 13	D_{2}	66. 50. 13	E	7. 12	D_{2}	66. 66. 66. 5.58	$\stackrel{\text { B }}{\text { E }}$
12. 12	D_{1}	66. 53.27	E	11. 12	D_{1}	66. 53. 59	${ }_{\text {E }}^{\text {E }}$	12. 13	D_{1}	66. 53. 28	$\stackrel{\text { E }}{ }$
14. 12	D_{2}	$\begin{array}{llll}66 . & 52 . & 7 \\ 66 . & \\ 66 . & 53\end{array}$	${ }_{\text {E }}^{\text {E }}$	13. 12	D_{2}	66. 55. 8	${ }_{\text {E }}$	15.12 16.12 19.	D_{2}	66. 52. 15	E
17. 15	D_{2}	66. 53. 58	B	17. 13	D_{2}	66. 52. 57	${ }_{B}^{B}$		D_{1}	66. 53. 10	B
20. 12	D_{1}	$\begin{array}{lll}66 . & 53 . & 34 \\ 66.52 . & 10\end{array}$	B ${ }^{\text {B }}$	19. 12	D_{1}	66. 54. 66. 50	B	19. 12	D_{2}	66. 54.53	B
	D_{1}	66. 53. 25	B	23. 12	D_{1}	66. 50. 58	B	26. 12	D_{1}	66. 54.54	E
26. 13	D_{2}	66. 55. 25	B	27. 12	D_{2}	66. 51. 47	B	28. 12	D_{2}	66. 49.6	E
28. 12	D_{1}	66. 53.31	B	30. 13	D_{1}	66. 52.22	B	29. 12	D_{1}	66. $54 \cdot 46$	E
Feb. 2. 12	D_{1}	66. 52. 55	${ }_{8}^{\text {B }}$	June 2. 12	D_{1}	66. 52. 21	$\stackrel{B}{B}$	Oct. $\begin{aligned} & \text { 3. } 12 \\ & \\ & 4.12 \\ & \text { 4. } \\ & \text { 12 }\end{aligned}$	D_{1} D_{2}	66. 53.16 66. 56.	B ${ }_{\text {B }}$
5.	D_{2}	66. 53. 24	B	4. 1	D_{2}	66. 51. 17	B ${ }_{\text {B }}$	4. 12	D_{2}	66. $56 . \quad 2{ }^{\text {66. }} 54.59$	${ }^{\text {B }}$
8. 12	D_{1}	66. 51.52	B	7. 12	D_{1}	66. 51. 58	B	$\begin{array}{r}\text { 7. } 12 \\ \text { 10. } 12 \\ \hline\end{array}$	D_{1}	66. 54.59	${ }^{\text {B }}$
9. 14	D_{2}	66. 52. 5	B	9. 12	D_{2}	66. 51. 47	$\stackrel{\text { B }}{ }$	10. 12 12. 15	D_{1}^{2}	66. 52. 38	B
II. 13	D_{1}	66. 51. 45	${ }^{\text {B }}$	11. 13	D_{1}	66. 53.9	$\stackrel{\text { B }}{ }$	12. 15 14.13 17	D_{1}		B
14. 13	D_{2}	66. 49. 32	B	14. 12	D_{2}	66. 54. 32	$\stackrel{\text { B }}{\text { E }}$	14.13 17.12 19	D_{2}	66. 55.1	E
15. 12	D_{2}	66. 48.39	$\underset{\text { E }}{\text { E }}$	16. 12	D_{2}	66. 49. 22 66. 54. 35	$\underset{\mathrm{E}}{\mathrm{E}}$	17.12 19. 12	D_{1}	66. 54.30	E
17. 12	D_{1}	66.52 .13 66.51 .28	$\underset{\text { E }}{\text { E }}$	22.	D_{1} D_{2}	66. 54. 35 66. 49.8	$\underset{\text { E }}{\text { E }}$	19. 12	D_{1}	66. 50. 46	E
21. 12	D_{2}	66. 51. 28	E	22. 12	D_{2}	66. 49.88	$\stackrel{\text { E }}{\text { E }}$	21. 12	D_{1}	66. 53. 28	E
23. 12 25. 13	D_{1} D_{2}	66. 53. 66.58 61.	$\stackrel{\mathrm{E}}{\mathrm{E}}$	23. 12	D_{1} D_{2}	66. 52. 52	${ }_{\text {E }}$	26. 12	D_{2}	66. 53. 18	E
25. 13 28. 12	D_{1}	66. 51.8	$\stackrel{\mathrm{E}}{\mathrm{E}}$	27.12 29.12	D_{1}	66. 50. 10 66.51 .22	${ }_{\text {E }}$	28. 12	D_{1}	66. 55. 9	E
Mar. 2. 13	D_{1}	66. 53. 11	B	July 1. 12	D_{1}	66. 51.17	E	Nov. 1. 12	D_{1}	66. 52. 4^{6}	E
4. 12	D_{2}	66. 5 i . 10	B	4.13	D_{2}	66. 50. 51	B	3. 12	D_{2}	66. $55 \cdot 52$	E
7. 13	D_{1}	66. 52. 57	B	5. 13	D_{1}	66. 52. 37	B	7. 12	D_{1}	66. 52.26	E
9. 13	D_{2}	66. 49.53	B	8. 12	D_{2}	66. 50. 39	E	9.12	D_{2}	66. 53. 43	E
12. 12	D_{1}	66. 52. 5	B	12. 12	D_{1}	66. 52. 3^{2}	E	II. 12	D_{1}	66. 53. 59	E
14. 12	D_{2}	66. 51.53	B	15. 12	D_{2}	66. 50. 33	E	14. 12	D_{2}	66. 49.45	E
17. 12	D_{2}	66. 49.19	E	18. 12	D_{2}	66. 48.24	B	16. 12	D_{2}	66. 52. 4^{6}	B
18. 12	D_{1}	66. 52. 12	E	19. 12	D_{1}	66. 50.14	B	19. 13	D_{1}	66. 54. 29	B
21. 12	D_{2}	66. 51.23	E	22. 12	D_{2}	66. 55.16	B	21. 14	D_{2}	66. 55. ${ }^{\circ}$	${ }^{\text {B }}$
23. 12	D_{1}	66. 51. 45	E	25. 12	D_{1}	66. 52. 33	B	24. 10	D_{1}	66. 54. 24	B
29. 12	D_{2}	66. 52. 59	E	28. 12	D_{2}	66. 52. 57	E	28.12 29.13		66. 66. 66. 53.	B ${ }_{\text {B }}^{\text {B }}$
30. 12	D_{1}	66. 53.12	E	29. 12	D_{1}	66. $53 \cdot 37$	E	29. 13	D_{1}		B
Apr. 1. 12	D_{1}	66. 56. ○	B	Aug. 2. 15	D_{1}	66. 52. I	E	Dec. 2. 15	D_{1}	66. 56. 59	B
4. 13	D_{2}	66. 52. 58	B	4. 12	D_{2}	66. 55.33	E	5. 15	D_{2}	66. 53. 12	B
6. 12	D_{1}	66. 51.52	B	8. 12	D_{1}	66. 52. 25	E	7. 11	D_{1}	66. 50. 12	${ }^{\text {B }}$
8. 13	D_{2}	66. 50.25	B	10.	D_{2}	66. 53.27	E	10. 12	D_{2}	66. 49.43	B
12. 12	D_{1}	66. 51.8	B	12. 12	D_{1}	66. 51. 55	E	12. 15	D_{1}	66. 51. 38	B
14. 12	D_{2}	66. 51.31	B	15. 12	D_{2}	66. 47.53	E	14. 12	D_{2}	66. 51. 38	B
18. 12	D_{2}	66. 55.36	E	19. 13	D_{2}	66. 50.56	B	16. 12	D_{2}	66. 50.15	$\stackrel{\text { E }}{\text { E }}$
20. 12	D_{1}	66. 54. 4	E	20. 12	D_{1}	66. 52. 51	B	19. 12	D_{1}	66. 54.7	$\stackrel{\text { E }}{\text { E }}$
22. 12	D_{2}	66. 54.42	E	22. 13	D_{2}	66. 57. 22	B	21. 12	D_{2}	66. 55. 25	$\stackrel{\mathrm{E}}{\mathrm{E}}$
26. 12	D_{1}	66. 53. 39	E	25.13	D_{1}	66. 55.8	B	22. 11	D_{1}	66. 66. 66. 56	$\stackrel{\mathrm{E}}{\mathrm{E}}$
28. 12	D_{2}	66. 53. 0	E	29. 15	D_{2}	66. 52. 36 66.52 .50	B ${ }^{\text {B }}$	28. 12 30. 10		66. 52.8	$\stackrel{\mathrm{E}}{\mathrm{E}}$
29. 12	D_{1}	66. 54. 35	E	30. 12	D_{1}	66. 52. 50	B	30. 10	D_{1}		E

Table XVIII.-Monthly and Yearly Means of Magnetic Dip in the Year 1910.

Monthly Means of Magnetic Dip.				
	${ }_{3-\text {-inch }} \mathrm{D}_{\mathrm{L}} \mathrm{N}_{\text {eedle }}$.	Number of Observations.		Number of Observations.
January .	66. $53.55^{\prime \prime}$	6	66. $53^{\prime} \cdot{ }^{\prime \prime}$	6
February	66. 52.24	6	66.51. 3	6
March ...	66.52. 34	6	66.51. 6	6
April .	66. 53.33	6	66.53. 2	6
May.	66. 53.8	6	66.51. 53	6
June.,	66. $5^{2 .} 43$	6	66.51. 3	6
July...................	66.52. 8	6	66.51. 27	6
August..........	66.52. 52	6	66. 52.58	6
September	66.53.31	6	66.51. 24	6
October....	66.54. ○	6	66.53. 4	6
November....	66. 53.34	6	66.52. 59	6
December.......	66. 53.26	6	66.52. 4	6
Means.........	66. 53.9	Sum 72	66. 52.1 ' ${ }^{\prime \prime}$	sum 72
Mean Annual Dip......				

The monthly means have been formed without reference to the hour at which the observation on each day was made. In combining the monthly results, to form annual means, weights have been given proportional to the number of observations.

Table XIX.-Determinations of the Absolute Value of Horizontal Magnetic Force in the Year igio.
Abstract of the Observations of Deflexion of a Magnet for Absolute Measure of Horizontal Force made with the Gibson Instrument in the Magnetic Pavilion.

Greenwich Civil Time, 19го.	Distances of Centres of Magnets.	Temperature Fahrenheit.	$\begin{aligned} & \text { Observed } \\ & \text { Deflexion. } \end{aligned}$	Mean of the Times of Vibration of Deflecting Magnet.	$\begin{gathered} \text { Number } \\ \text { vibratious. } \end{gathered}$	Temperature Fahrenheit.	Observer.
$\begin{array}{lrr} & \\ \text { January } & \begin{array}{r} \text { d } \\ 7 \end{array} & \begin{array}{l} \text { n } \\ 13 \end{array} \end{array}$	$\begin{aligned} & \text { ft. } \\ & \text { } \circ \\ & 1 \circ \end{aligned}$	$43^{\circ} \cdot$	$\begin{aligned} & \circ .36 .49^{\prime \prime} \\ & 4.21 .55 \end{aligned}$	$\begin{gathered} 8 \\ 5.813 \\ 5.811 \end{gathered}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{array}{r} 43^{\circ} 6 \\ 44^{\circ} 4 \end{array}$	E
January ${ }^{24 .} 15$	$\begin{aligned} & 1 \circ 0 \\ & 1 \cdot 3 \end{aligned}$	457	$\begin{aligned} & 9.36 \cdot 15 \\ & 4.21 .38 \end{aligned}$	$\begin{aligned} & 5.812 \\ & 5.816 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 45.6 \\ & 46.8 \end{aligned}$	B
February 8. 15	$\begin{aligned} & 1 \circ \\ & 1.3 \end{aligned}$	$49 \cdot 8$	$\begin{aligned} & 9.35 .8 \\ & 4.2 \mathrm{I} .10 \end{aligned}$	$\begin{aligned} & 5.811 \\ & 5.811 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{array}{r} 49^{\prime} 1 \\ 49^{\prime} 7 \\ \hline \end{array}$	B
February 21. 15	$\begin{aligned} & \mathrm{I} \circ \\ & \mathrm{I} \cdot 3 \end{aligned}$	517	$\begin{aligned} & 9.35 .49 \\ & 4.21 .24 \end{aligned}$	$\begin{aligned} & 5.815 \\ & 5.814 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 52 \cdot 6 \\ & 53 \cdot 9 \end{aligned}$	E
March 7. 15	$\begin{aligned} & 10 \\ & 1 \cdot 3 \end{aligned}$	$56 \cdot 2$	$\begin{aligned} & \text { 9.34. } 40 \\ & \text { 4. 2I. } 0 \end{aligned}$	$\begin{array}{r} 5.817 \\ 5.817 \\ \hline \end{array}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 56 \cdot 0 \\ & 57 \cdot 6 \end{aligned}$	B
March 23. 13	$\begin{aligned} & 1 \circ \\ & 1.3 \\ & \hline \end{aligned}$	$50^{\circ} 4$	$\begin{aligned} & \text { 9. } 35.54 \\ & 4.21 .34 \end{aligned}$	$\begin{aligned} & 5.815 \\ & 5.814 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{array}{r} 50.7 \\ 53.1 \\ \hline \end{array}$	E
April 7. 15	$\begin{aligned} & 10 \\ & 1 \cdot 3 \end{aligned}$	54°	$\begin{aligned} & 9.35 .15 \\ & 4.21 .10 \end{aligned}$	$\begin{aligned} & 5.813 \\ & 5.815 \\ & \hline \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 53.2 \\ & 54^{\circ} \end{aligned}$	B
April 27. 15	$\begin{aligned} & \mathrm{I} \circ \\ & 1.3 \end{aligned}$	$55 * 4$	$\begin{aligned} & \text { 9. } 34.46 \\ & 4.20 .56 \end{aligned}$	$\begin{aligned} & 5.816 \\ & 5.811 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 55.4 \\ & 56.6 \end{aligned}$	E
May 6. 15	$\begin{aligned} & 1 \circ \\ & 1.3 \end{aligned}$	54°	$\begin{aligned} & \text { 9.35. } 9 \\ & \text { 4.21. } 16 \end{aligned}$	$\begin{aligned} & 5 \cdot 812 \\ & 5.814 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 54.8 \\ & 56 \% \\ & \hline \end{aligned}$	E
May 23. 15	$\begin{aligned} & 100 \\ & 1 \cdot 3 \end{aligned}$	734	$\begin{aligned} & \text { 9.32. 10 } \\ & 4.20 .0 \end{aligned}$	$\begin{aligned} & 5 \cdot 820 \\ & 5 \cdot 820 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	73.7 \cdots	B
June 8. 15	$\begin{aligned} & 100 \\ & 1 \cdot 3 \end{aligned}$	$74^{\prime 3}$	$\begin{aligned} & 9 \cdot 32.15 \\ & 4.19 .45 \end{aligned}$	$\begin{aligned} & 5.819 \\ & 5.817 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 75.1 \\ & 76.5 \end{aligned}$	B
June 23. 15	$\begin{aligned} & 1 \circ \\ & 1 \cdot 3 \end{aligned}$	$66 \cdot 3$	$\begin{aligned} & 9.33 .39 \\ & 4.20 .23 \end{aligned}$	$\begin{aligned} & 5.819 \\ & 5.821 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 67 \cdot 1 \\ & 68 \cdot I \end{aligned}$	E
July 8. 15	$\begin{aligned} & 1 \circ \\ & 1 \cdot 3 \end{aligned}$	$58 \cdot 4$	$\begin{aligned} & 9 \cdot 34 \cdot 3 \mathrm{I} \\ & 4.2 \mathrm{I} . \mathrm{I} \end{aligned}$	$\begin{aligned} & 5.818 \\ & 5.819 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{gathered} 59 \cdot 1 \\ 60 \cdot 1 \end{gathered}$	E
July 22. 15	$\begin{aligned} & 1 \circ \\ & 1.3 \end{aligned}$	$65 \cdot 8$	$\begin{aligned} & 9.33 .3 \\ & 4.20 .13 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.820 \\ & 5.818 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 65^{\circ} 8 \\ & 66 \cdot \circ \end{aligned}$	B
August 8. 15	$\begin{aligned} & 100 \\ & 1 \cdot 3 \end{aligned}$	65^{1}	$\begin{aligned} & 9.33 .25 \\ & 4.20 .24 \end{aligned}$	$\begin{aligned} & 5.821 \\ & 5.820 \end{aligned}$	$\begin{aligned} & 100 \\ & 280 \end{aligned}$	$\begin{aligned} & 65 \cdot 6 \\ & 66.6 \end{aligned}$	E
August 23. 13	$\begin{aligned} & 1 \circ \\ & 1.3 \end{aligned}$	$66 \cdot 5$	$\begin{aligned} & \text { 9. } 34 . \quad 0 \\ & \text { 4. } 20.35 \end{aligned}$	$\begin{aligned} & 5.827 \\ & 5.825 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 65 \cdot 9 \\ & 66 \cdot 5 \\ & \hline \end{aligned}$	B
September 7. 16	$\begin{aligned} & 1.0 \\ & 1.3 \end{aligned}$	59^{2}	$\begin{array}{r} \text { 9. } 34.50 \\ \text { 4. 2I. } 3 \end{array}$	$\begin{aligned} & 5.817 \\ & 5.819 \\ & \hline \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{array}{r} 58.4 \\ 59.2 \\ \hline \end{array}$	B
September 22. 15	$\begin{aligned} & 10 \\ & 1 \cdot 3 \end{aligned}$	$61 \cdot 3$	$\begin{aligned} & 9.36 .50 \\ & 4.21 .53 \end{aligned}$	$\begin{aligned} & 5.811 \\ & 5.815 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 6 \mathrm{I}^{\circ 9} \\ & 63.0 \end{aligned}$	E
October 7. 16	$\begin{aligned} & 1 \circ \\ & 1 \cdot 3 \end{aligned}$	$65^{\circ} \mathrm{O}$	$\begin{aligned} & 9.35 .30 \\ & 4.21 .20 \end{aligned}$	$\begin{aligned} & 5 \cdot 816 \\ & 5.811 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 64 \cdot 7 \\ & 65^{\prime} \cdot 1 \end{aligned}$	B
October 24.15	$\begin{aligned} & 1 \circ \\ & 1.3 \end{aligned}$	$55 \cdot 6$	$\begin{aligned} & \text { 9. 37. ○ } \\ & \text { 4. 21. } 58 \end{aligned}$	$\begin{aligned} & 5.812 \\ & 5.811 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 56 \cdot 3 \\ & 57 \cdot 9 \\ & \hline \end{aligned}$	E
November 7. 15	$\begin{aligned} & 1 \circ \\ & 1.3 \end{aligned}$	51^{11}	$\begin{aligned} & \text { 9. } 36.28 \\ & 4.2 \text { I. } 54 \end{aligned}$	$\begin{aligned} & 5.805 \\ & 5.806 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 52.2 \\ & 53.9 \end{aligned}$	E
November 24.13	$\begin{aligned} & 1 \circ \\ & 1 \cdot 3 \end{aligned}$	$44^{\circ} 9$	$\begin{aligned} & 9.37 .58 \\ & 4.22 .35 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.802 \\ & 5.804 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{array}{r} 44.6 \\ 46.0 \\ \hline \end{array}$	B
December 7. 13	$\begin{aligned} & 1 \circ \\ & 1 \cdot 3 \end{aligned}$	$50 \cdot 2$	$\begin{aligned} & 9.36 .40 \\ & 4.21 .53 \end{aligned}$	$\begin{aligned} & 5 \cdot 806 \\ & 5: 806 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 49^{\circ} 9 \\ & 51 \div 1 \end{aligned}$	B
December 22. 12	$\begin{array}{r} 1.0 \\ 1.3 \\ \hline \end{array}$	51°	$\begin{aligned} & \text { 9. } 37.19 \\ & 4.22 .20 \\ & \hline \end{aligned}$	$\begin{aligned} & 5 \cdot 808 \\ & 5.811 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 51.8 \\ & 52 \cdot 0 \\ & \hline \end{aligned}$	E

The deflecting magnet is placed on the east side of the suspended magnet, with its marked pole alternately east and west, and on the west side with its marked pole also alternately east and west: the deflexion given in the table above is the mean of four deflexions observed in these positions of the magnets.
The initials B and E are those of Mr. Bryant and Mr. Edney.
In the subsequent calculations every observation is reduced to the temperature 35° Fahrenheit.

Table XIX.-continued-Computation of the Values of Horizontal Force in absolute Measure.
From Observations made with the Gibson Instrument in the Magnetic Pavilion.

Greenwich Civil Time, 1910.	In British Units.									In C. G. S. Units. Value of Horizontal Force.	
	Apparent	Apparent				Corrected Time of		Value	Value of		
	Value of \mathbf{A}_{1}.	Value of A_{2}.	Value of P.	Value of P.	Log. ${ }_{Y}^{\text {Y }}$.	Vibration of Deflecting Magnet.	Log. $m X$.	of m.	Horizontal Force S.	As observed.	Reduced to Mean of Month
d h											
Jan. 7. 13	0.08360	0.08371	0.00305)	8.92362	5-8191	0.13110	0.3368	4.0155	'18515	'18513
Jan. 24. 15	0.08356	0.08365	0.00271		8.92336	$5 \cdot 8215$	$0 \cdot 13075$	0.3366	4.015 5	-18513	. 18520
Feb. 8. 15	0.08345	0.08356	0.0032 I		$8 \cdot 92287$	$5 \cdot 8168$	0.13148	0.3367	4.0207	-18539	-18527
Feb. 21. 15	0.08358	0.08366	$0 \cdot 00243$		8.92346	$5 \cdot 8188$	0.13119	0.3368	4.0167	-18520	-18526
Mar. 7. 15	0.08348	0.08360	0.00355		8.92302	$5 \cdot 8203$	0.13099	0.3365	4.0178	-18525	-18521
Mar. 23. 13	0.08357	0.08370	0.00367		$8 \cdot 92353$	$5 \cdot 8202$	0.13098	0.3367	4.0154	-18514	-18525
Apr. 7. 15	0.08353	0.08362	$0 \cdot 00259$		$8 \cdot 92321$	$5 \cdot 8193$	0.13113	0.3366	4.0175	$\cdot 18524$	-18520
Apr. 27. 15	0.08348	0.08357	0.00254		$8 \cdot 92294$	5.8175	0.13141	0.3367	4.0201	-18536	-18588
May 6. 15	0.08352	0.08365	$0 \cdot 00395$		8.92326	$5 \cdot 8177$	0.13136	0.3368	4.0184	'i8528	- 18546
May 23. 15	0.08337	0.08353	$0 \cdot 00479$		$8 \cdot 92257$	$5 \cdot 8162$	0.13171	0.3366	4.0232	- 18550	-18525
June 8. 15	0.08339	0.08346	0.00203		$8 \cdot 92245$	5.8115	0.13241	0.3368	4.0270	$\cdot 18568$	$\cdot 18546$
June 23. 15	0.08348	0.08355	0.00203		8.92288	$5 \cdot 8105$	O.13251	0.3371	4.0255	-18561	$\cdot 18560$
July 8. 15	0.08349	0.08364	0.00440	-0.00327	8.92315	$5 \cdot 8202$	0.13102	0.3366	4.0173	'18523	- 18541
July 22. 15	0.08339	0.08349	0.00299		$8 \cdot 92249$	$5 \cdot 8173$	0.13150	0.3365	4.0226	$\cdot 18547$	$\cdot 18527$
Aug. 8. 15	0.08343	0.08354	0.0032 I		$8 \cdot 92273$	$5 \cdot 8196$	0.13115	0.3365	4.0199	-18535	${ }^{1} 8524$
Aug. 23. 13	0.08353	0.08362	$0 \cdot 00248$		8.92320	5.8259	O.13023	0.3363	4.0134	-18505	-18535
Sept. 7. 16	0.08354	0.08366	0.00327		8.92334	$5 \cdot 8200$	0.13105	0.3367	4.0166	'18520	$\cdot 18523$
Sept. 22. 15	0.08386	0.08395	0.00259		8.92494	5.8137	$0 \cdot 13201$	0`3377	$4^{\circ} \mathrm{OL} 36$. 18506	-18541
Oct. 7. 16	0.08373	0.08383	0.00316		8.92427	5.8123	0.13224	0.3375	4.0178	-18525	${ }^{18517}$
Oct. 24. 15	0.08381	0.08390	0.00265		$8 \cdot 92464$	5.8135	0.13200	0.3375	40149	-18512	- 18532
Nov. 7. 15	0.08366	0.08381	0.0044°		8.92406	$5 \cdot 8036$	0.13346	0.3379	4.0244	-18556	$\cdot 18517$
Nov. 24. 13	$0 \cdot 08379$	0.08395	0.00451		8.92473	$5 \cdot 8109$	0.13234	$0 \cdot 3377$	4.0161	-18518	- 18539
Dec. 7. 13	0.08368	0.08379	0.00327		8.92405	$5 \cdot 8102$	$0 \cdot 13247$	0.3375	40199	-18535	-18524
Dec. 22. 12	0.08379	0.08396	0.00491	$)$	8.92475	$5 \cdot 8 \mathrm{I} 3 \mathrm{I}$	0.13203	0.3376	4.0146	-18511	'18525
Means	\ldots	...	\ldots	...	\cdots	...	4.0185	-18529	-1853 ${ }^{2}$

The value of X in British Units is referred to the Foot-Grain-Second Unit.

MONTHLY MEAN DIURNAL INEQUALITIES OF MAGNETIC ELEMENTS FROM HOURLY ORDINATES, ON FIVE SELECTED DAYS, IN EACH MONTH.

Each result is the mean of the corresponding hourly ordinates from the photographic register, on five quiet days in each month, selected for comparison with results at other British Observatories. The days included are January 8, 11, 15, 16, 30, February 6, 10, 12, 13, 19, March 8, 12, 24, 25, 26, April 8, 10, 11, 15, 21, May 6, 8, 12, 21, 22, June 3, 5, 17, 18, 28, July 2, 13, 14, 18, 28, August 7, 8, 12, 16, 26, September 3, 4, 17, 18, 19, October 9, 15, 16, 17, 18, November 6, 12, 13, 14, 24, December 9, 11, 12, 17, 23.
The results for Declination are given in minutes of arc : those for Horizontal Force and Vertical Force are given both in terms of the whole Horizontal or Vertical Force and in terms of the C. G. S. Unit. The letter f indicates values in terms of the whole Horizontal or Vertical Force, and the letter m values in terms of the C. G. S. Unit, the unit for the former values being roooor of the whole Horizontal or Vertical Force, and for the latter -00000I of the C. G. S. Unit. The values of the whole Horizontal and Vertical Forces expressed in terms of the C. G. S. Unit are $\cdot 18532$ and 43399 respectively for the year.

Table XX.--Monthly Mean Diurnal Inequality of Magnetic Declination West.
(The results are in each case diminished by the smallest hourly value.)

1910.													
$\begin{gathered} \text { Hour, } \\ \begin{array}{c} \text { Heenwich } \\ \text { civili } \\ \text { Time. } \end{array} \end{gathered}$	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.	$\underset{\substack{\text { For the } \\ \text { Year. }}}{ }$
dni	\bigcirc	\bigcirc	$2 \cdot 8$	$4 \cdot 4$	$3 \cdot 2$	$4^{\prime} 7$	3.3	$2 \cdot 7$	$2: 0$	$1 \cdot 5$	\bigcirc	$0 \cdot 4$	1 ${ }_{9} 9$
$1^{\text {h }}$	1.4	$\bigcirc \cdot 9$	$2 \cdot 8$	$4 \cdot 3$	3.5	4.4	3.2	$2 \cdot 7$	$2 \cdot 1$	1•8	$\bigcirc \cdot 7$	$1 \cdot 1$	$2 \cdot 17$
2	1.6	1.4	3.0	4.5	3.9	3.7	3.0	3.0	$2 \cdot 3$	$2 \cdot 2$	1.6	1.8	2.43
3	$1 \cdot 9$	$1 \cdot 3$	$3 \cdot 1$	$4 \cdot 1$	$3 \cdot 6$	$3 \cdot 6$	$3{ }^{\circ}$	$3 \cdot 1$	1-8	2.0	1.2	1.6	2.28
4	1.8	$1 \cdot 0$	3.0	$3 \cdot 7$	$2 \cdot 9$	$2 \cdot 8$	$2 \cdot 5$	2.4	14	2.2	1.5	1.5	I'99
5	19	1×1	$2 \cdot 5$	3.4	$0 \cdot 9$	$1 \cdot 1$	14	1.6	1.2	199	1.6	$1 \cdot 5$	$1 \cdot 43$
6	1.6	$\bigcirc \cdot 9$	$2 \cdot 3$	29	$0 \cdot 4$	$0 \cdot 0$	$0 \cdot 2$	1.0	$0 \cdot 8$	1'7	$1 \cdot 1$	17	$0 \cdot 98$
7	$1 \cdot 3$	$0 \cdot 5$	$1 \cdot 5$	14	$0 \cdot 2$	$\bigcirc \cdot 0$	$\bigcirc \circ$	$0 \cdot 3$	$0 \cdot 2$	$1 \cdot 2$	$\bigcirc \cdot 7$	17	$0 \cdot 5.1$
8	0.6	$\bigcirc \circ$	$0 \cdot 0$	$0 \cdot 0$	$0 \cdot 0$	$0 \cdot 4$	$0 \cdot 0$	$0 \cdot 0$	$\bigcirc \cdot$	$0 \cdot 2$	$\bigcirc \cdot 3$	14	$0 \cdot 00$
9	$0 \cdot 0$	$\bigcirc \cdot 1$	$0 \cdot 2$	0.6	1.0	$2 \cdot 1$	$\bigcirc \cdot 7$	$0 \cdot 9$	$1 \cdot 3$	$\bigcirc \cdot$	$\bigcirc \cdot 1$	$1 \cdot 1$	$0 \cdot 44$
10	$1 \cdot 1$	$\bigcirc \cdot 9$	$2 \cdot 1$	$2 \cdot 6$	3.1	$4 \cdot 6$	23	2.8	$3 \cdot 3$	1.2	$1 \cdot 1$	$1 \cdot 7$	1×99
11	$2 \cdot 2$	$2 \cdot 6$	4.9	$5 \cdot 1$	$5 \cdot 2$	$6 \cdot 8$	44	5.2	$5 \cdot 8$	37	34	$2 \cdot 7$	4.09
Noon.	3.3	3.5	$7 \cdot 6$	$8 \cdot 1$	73	$8 \cdot 8$	5.8	$7 \cdot 4$	8.2	57	47	3.6	5.93
$13^{\text {h }}$	43	41	87	10.2	8.4	9.5	$6 \cdot 8$	$8 \cdot 3$	8.4	64	5.0	$3 \cdot 7$	$6 \cdot 74$
14	$4{ }^{\circ}$	3.7	8.4	9×9	8.0	9.7	$6 \cdot 8$	$8 \cdot 7$	$7 \cdot 2$	$6 \cdot 2$	$4 \cdot 4$	3.2	6.44
15	$2 \cdot 8$	2.2	$6 \cdot 8$	8.0	$6 \cdot 5$	$8 \cdot 6$	$6 \cdot 3$	7.5	$5 \cdot 3$	$4 \cdot 8$	$3 \cdot 1$	2.5	$5 \cdot 13$
16	$2 \cdot 2$	I•5	4.9	$6 \cdot 3$	$5 \cdot 6$	7.2	59	5 '9	34	34	$2 \cdot 6$	2.2	4.02
17	1.8	1.6	3.9	$5 \cdot 1$	4.9	$5 \cdot 8$	$5 \cdot 3$	47	$2 \cdot 4$	$3{ }^{\circ}$	$2 \cdot 3$	1.8	3.31
18	1.8	14	37	$4 \cdot 7$	4.1	$5 \cdot 2$	$5{ }^{\circ}$	3.8	$2 \cdot 5$	$2 \cdot 5$	$2 \cdot 1$	1.4	2.94
19	14	13	$3 \cdot 4$	$4 \cdot 7$	$3 \cdot 8$	$4 \cdot 7$	$4 \cdot 8$	3.9	$2 \cdot 5$	$2 \cdot 2$	$1 \cdot 5$	$1 \cdot 2$	2.71
20	$1 \circ 0$	$\bigcirc \cdot 7$	3.0	47	3.9	$4 \cdot 8$	$4 \cdot 6$	$3 \cdot 7$	$2 \cdot 3$	$1 \cdot 9$	$0 \cdot 5$	$\bigcirc \cdot 9$	2.43
21	$0 \cdot 8$	$0 \cdot 4$	$2 \cdot 7$	$4 \cdot 6$	3.6	$4 \cdot 6$	$4 \cdot 6$	$3 \cdot 5$	$2 \cdot 3$	1×9	$0 \cdot 5$	$0 \cdot 4$	$2 \cdot 25$
22	$0 \cdot 6$	$0 \cdot 4$	$2 \cdot 4$	44	$3 \cdot 3$	4.4	4.2	3.4	2.0	$1 \cdot 9$	$\bigcirc \cdot 7$	$0 \cdot 0$	2.07
23	$\bigcirc \cdot 7$	$0 \cdot 3$	$2 \cdot 2$	43	$3 \cdot 5$	4.4	$3 \cdot 8$	3.0	1'9	$2 \cdot 2$	$0 \cdot 7$	$0 \cdot 1$	2.02
24	$\bigcirc \cdot 9$	$0 \cdot 6$	$2 \cdot 3$	$4{ }^{1}$	3.4	4.2	$3 \cdot 1$	$2 \cdot 6$	2.2	24	0.8	0.6	2.03
$00^{o^{h}-23^{\text {b }}}$	171	$1 \cdot 34$	$3 \cdot 58$	4.67	$3 \cdot 78$	$4 \cdot 66$	$3 \cdot 66$	373	2.94	$2 \cdot 57$	1×73	1.63	2.76
	171	135	3.56	4.65	379	$4 \cdot 64$	3.65	$3 \cdot 73$	2.95	$2 \cdot 61$	$1 \cdot 76$	1.64	$2 \cdot 76$

Table XXI.-Monthly Mean Diurnal Inequality of Horizontal Magnetic Force.
(The results are corrected for temperature, and in each case diminished by the smallest hourly value.)

1910.																										
$\begin{gathered} \text { Hour, } \\ \substack{\text { Greeen. } \\ \text { wichl } \\ \text { civil } \\ \text { Time. }} \end{gathered}$	January.		February.		March.		April.		May.		June.		July.		Augus.		September.		Octob		November.		December.		For the Year,	
	f	m	f	m	f	m	f	m	f	${ }^{m}$	f	m	f	m	f	n	f	m	f	m	f	m	f	m	f	m
Midn.	62	115	54	100	148	274	192	356	118	219	164	304	114	211	148	274	166	308	125	232	68	126	40	74	109.8	$3 \cdot 4$
$1^{\text {b }}$	66	122	60	111	146	271	173	321	114	211	156	289	112	208	149	276	165	306	111	206	68	126	42	78	1067	7
2	68	126	68	126	139	258	167	309	118	219	143	265	105	195	137	254	169	313	105	195	66	122	36	67	103.3	
3	78.	145	68	126	135	250	180	334	109	202	151	280	111	206	147	272	160	297	111	206	83	154	46	85	108.	
4	85	158	86	159	142	263	175	324	107	198	152	282	109	202	147	272	150	278	117	217	91	169	63	117	1110	
5	93	172	86	159	142	263	175	324	100	185	164	304	108	200	138	256	124	230	125	232	93	172	69	128	III	\bigcirc
6	91	169	91	169	138	256	170	315	94	174	126	234	88	163	136	252	111	206	123	228	107	198	74	137		7
7	93	172	83	154	117	217	148	274	76	141	91	169	56	104	98	182	83	154	116	215	105	195	70	130	87	
8	77.	143	67	124	87	161	115	213	44	82	56	104	50	93	50	93	32	59	88	163	83	154	63	117	O'9	
9	34	63	38	70	39	72	53	98	20	37	20	37	24	44	6	11	\bigcirc	\bigcirc	32	59	37	69	47	87	22.4	
10	8	15	16	30	3	6	3	6	-	-	-	-	4	7	-	0	16	30	6	11	7	13	19	35	0.0	
11	-	0	-	-	\bigcirc	-	-	-	4	7	9	17	\bigcirc	\bigcirc	14	26	48	89	\bigcirc	-	-	-	11	20		
Noon.	10	19	4	7	26	48	32	59	42	78	27	50	2	4	43	80	86	159	32	59	24	44	11	20	21	5
$13^{\text {b }}$	41	76	45	83	60	111	77	143	81	150	74	137	42	78	81	150	113	209	67	124	46	85	-	-	53	'5
14	50	93	61	113	83	154	113	209	108	200	116	215	73	135	98	182	114	211	78	145	63	117	4	7		
15	60	111	60	111	109	202	14^{8}	274	115	213	143	265	107	198	130	241	120	222	94	174	72	133	24	44		6
16	54	100	56	104	119	221	176	326	140	259	156	289	119	221	160	297	124	230	102	189	73	135	40	74	103	-
17	63	117	54	100	119	221	189	35°	162	300	186	345	137	254	178	33°	144	267	121	224	73	135	49	91	116	
18	67	124	64	119	141	261	200	371	159	295	214	397	172	319	182	337	152	282	135	250	76	141	50	93		
19	58	107	71	132	157	291	204	378	163	302	228	423	181	335	196	363	165	306	145	269	75	139	58	107		
20	58	107	53	98	153	284	216	400	167	309	226	419	199	369	196	363	167	309	150	278	93	172	66	122		
21	54	100	57	106	139	258	216	400	162	300	217	402	197	365	204	378	159	295	148	274	113	209	61	113	137	4.0
22	48	89	63	117	147	272	215	39^{8}	152	282	191	354	199	369	196	363	159	295	157	291	115	213	68	126		
23	44	82	80	148	139	258	218	404	152	282	181	335	199	369	188	348	159	295	155	287	111	206	72	133	134	
24	48	89	91	169	147	272	228	423	154	285	173	321	193	358	188	348	158	293	153	284	110	204	75	139	$136 \cdot 4$	2527
Means.																										
	56	$105 \cdot 2$	777	1069		2030	$48 \cdot 1$	2744	04'5	93																
$1^{\mathrm{b}}-24^{\text {h }}$	$56 \cdot 2$	04.1	59.2	$109 \cdot 8$	109.5	2029	1496	$6277^{\circ} 2$	-	$196 \cdot 3$	33.3	27^{2}	1078	1998	$27 \cdot 6$	36	119.9	$22 \cdot 3$	103.0	$190 \cdot 8$	743	1377	$46 \cdot 6$	$86 \cdot 2$	926	171.5

Table XXII.-Monthly Mean Diurnal Inequality of Vertical Magnetic Force.
(The results are corrected for temperature, and in each case diminished by the smallest hourly value.)

ROYAL OBSERVATORY, GREENWICH.

MAGNETIC DISTURBANCES.

1910.

Magnetic Disturbances in Declination, Horizontal Force, and Vertical Force, recorded at the Royal Observatory, Greenwich, in the Year igio.

The following notes give a brief description of all magnetic movements (superposed on the ordinary diurnal movement) exceeding 3^{\prime} in Declination, 0.0010 in Horizontal Force, or 0.0003 in Vertical Force, as taken from the photographic records of the respective Magnetometers. The movements in Horizontal and Vertical Force are expressed in parts of the whole Horizontal and Vertical Forces respectively. When any one of the three elements is not specifically mentioned, it is to be understood that the movement, if any, was insignificant. Any failure or want of register is specially indicated.

The term "wave" is used to indicate a movement in one direction and return; "double wave" a movement in one direction and return with continuation in the opposite direction and return; "two successive waves" consecutive wave movements in the same direction; "fluctuations" a number of movements in both directions. The extent and direction of the movement are indicated in brackets, + denoting an increase, and - a decrease of the magnetic element. In the case of fluctuations the sign \pm denotes positive and negative movements of generally equal extent.

Magnetic movements which do not admit of brief description in this way are exhibited on accompanying plates.

The time is Greenwich Civil Time (commencing at midnight, and counting the hours from \circ to 24).
1910.

$4^{\mathrm{d}} 13^{\mathrm{h}}$ to $14^{\frac{1}{\mathrm{~h}}}$ Wave in H.F. (-.0010).

$6^{\mathrm{d}} 21 \frac{1^{\mathrm{h}}}{}$ to $22 \frac{1 \mathrm{Lh}}{4}$ Wave in F.F. (-0010).
$12^{d} 9^{\mathrm{h}}$ to $\mathrm{I}^{\mathrm{d}} 15^{\mathrm{h}}$ Loss of Dec. and H.F. register.
$13^{\mathrm{d}} 0^{\mathrm{h}}$ to $6 \frac{1}{2}{ }^{\mathrm{h}}$ Decrease in V.F. (-0004).
$17^{\mathrm{d}} 1 \mathbf{2}^{\mathrm{h}}$ to 14^{h} Irregular flat-crested wave in H.F. (-.0020), with small superposed fluctuations. 15^{h} to 17^{h} Very shary fluctuations in H.F. $\quad 16 \frac{1}{2}^{\mathrm{h}}$ to $16 \frac{3 \mathrm{~h}}{4}$ Sharp wave in Dec. $\left(+3^{\prime}\right)$, followed till 18^{h} by a double wave $\left(+3^{\prime}\right.$ to $\left.-3^{\prime}\right) . \quad 17^{\frac{3}{4} \mathrm{~h}}$ to $20^{\mathrm{h}^{2}}$ Wave in H.F. (-004^{8}), steep at commencement, with small waves superposed on second portion. 18^{h} to $19 \frac{2}{\mathrm{~h}}^{\mathrm{h}}$ Wave in Dec. $\left(-7^{\prime}\right)$. $18 \frac{1}{4}{ }^{\mathrm{h}}$ to $0^{0^{\mathrm{h}}}$ Wave in V.F. $(+\cdot 0008)$.
$18^{\mathrm{d}}{ }^{2} 3^{3 \mathrm{~h}}$ to $19^{\mathrm{d}} \mathrm{O}_{2}^{\mathrm{h}}$ Wave in H.F. (+ - 0010).
$19^{d} 0^{h}$ to 2^{h} Double wave in Dec. $\left(-4^{\prime}\right.$ to $\left.+5^{\prime}\right)$.
$21^{\mathrm{d}} 20^{\mathrm{h}}$ to 22^{h} Irregular double-crested wave in Dec. $\left(-5^{\prime}\right)$. $20 \frac{1}{4}^{\mathrm{h}}$ to 21^{h} Wave in H.F. ($+\cdots 016$).
$22^{\mathrm{d}} 0^{\mathrm{h}}$ to 23^{h} Irregular double wave in H.F. (+0014 to -0014), the first portion double-crested. o^{h} to 1^{h}
 $19^{3 \mathrm{~h}}$ to 21^{h} Very sharp fluctuations in H.F., followed till 24^{h} by an irregular triple-crested wave (-.0035), steep at both ends. $22^{\mathrm{d}} 20^{\mathrm{h}}$ to $23^{\mathrm{d}} \frac{03{ }_{4}^{\mathrm{h}}}{}$ Irregular double-crested wave in Dec. $\left(-133^{\mathrm{l}}\right)$, with smaller waves superposed.

 $15 \frac{3 \mathrm{~h}}{4}$ to $16 \frac{3 \mathrm{~h}}{}$ Wave in H.F. (-0019), with small sharp fluctuations before and after. 15^{h} to $17^{\frac{3}{4} \mathrm{~h}}$. Wave in Dec. $\left(-9^{\prime}\right)$, with small waves superposed. $18 \frac{3 \mathrm{~h}}{}{ }^{\text {to }} 19^{\mathrm{h}}$ Sharp decrease in Dec. $\left(-7^{\prime}\right)$. $18 \frac{3 \mathrm{~h}}{4}$ to 20^{h} Double wave in H.F. $\left(+.001\right.$ to -.0010), immediately followed till 21^{h} by another (-.0022 to +0017), the first portion very steep. 20^{h} to $21_{4}^{\frac{3 \mathrm{~h}}{}}$ Very steep double-crested wave in Dec. $\left(-11^{\prime}\right) . \quad 20^{\mathrm{h}}$ to $20 \frac{3 \mathrm{~h}}{4}$ Wave in V.F. $(+\circ 004)$.
1910.

January $25^{\mathrm{d}} 6^{\mathrm{h}}$ to $7 \frac{1}{4}^{\mathrm{h}}$ Wave in H.F. $(+\cdot 0011)$. $8 \frac{34^{\mathrm{h}}}{}$ to 10^{h} Wave in Dec. $\left(-3^{\prime}\right)$. $12 \frac{12^{h}}{}$ to $1^{\frac{1}{2} \mathrm{~h}}$ Two successive waves in H.F. $\left(+0010\right.$ and $+\circ 010$). $12 \frac{3 \mathrm{hb}}{4}$ to $14 \frac{1 \mathrm{~h}}{}{ }^{\mathrm{h}}$ Two successive waves in Dec. $\left(-3^{\prime}\right.$ and -3^{\prime}). $14 \frac{3 \mathrm{~h}}{}$ to 17^{h} Irregular triple wave in Dec. $\left(+3^{\prime},-8^{\prime},+3^{\prime}\right)$. 154^{hh} to $15^{3 \mathrm{~h}}$ 㗐 Wave in H.F. (-0022). $16 \frac{1}{4}$ Sharp decrease in H.F. (-0017). 17^{h} to $18 \frac{1}{2}{ }^{\mathrm{h}}$ Triple wave in H.F. $(+\cdots 012,-0018$, $+\cdot 0012$). $173^{\frac{34}{4}}$ to $18 \frac{1 \mathrm{~h}}{}{ }^{\mathrm{h}}$ Sharp wave in Dec. $\left(-11^{\prime}\right)$. 19^{h} to $193^{3 \mathrm{~h}}$ Wave in Dec. $\left(+6^{\prime}\right)$. $19^{1 \mathrm{~h}}$ to ${ }_{21}{ }^{\frac{1}{2} \mathrm{~h}}$ Two successive irregular waves in H.F. (-0021 and -0013). $22 \frac{1}{4}^{\frac{1 \mathrm{~h}}{}}$ to $23^{\frac{1}{2} \mathrm{~h}}$ Flat-crested wave
 Dec. (-3^{\prime}).
$2^{6^{d}} 33^{\frac{1}{\mathrm{~h}}}$ to 4^{h} Wave in Dec. $\left(+3^{\prime}\right)$. $9^{\frac{1}{2}}{ }^{\mathrm{h}}$ to 13^{h} Three successive waves in Dec. $\left(+5^{\prime},+5^{\prime},+4^{\prime}\right)$. ${ }^{17 \frac{1}{2}^{\mathrm{h}}}$ to

 wave in H.F. ($+{ }^{\circ} 0027$).

$29^{\mathrm{d}} 23^{\mathrm{h}}$ to $33^{\mathrm{o}^{\mathrm{d}}} 0_{\frac{1 \mathrm{~h}}{\mathrm{~h}}}$ Wave in H.F. $(+\cdot 0013)$.
$31^{d} 1^{\text {b }}$ to $17 \frac{1}{2}^{\text {h }}$ Loss of H.F. register.

February $2^{\text {d }} 14^{\frac{14}{h}}$ to 16^{h} Double wave in H.F. (-0012 to +0010), the first portion flat-crested. $1^{154^{h}}$ to $16 \frac{1}{2}{ }^{\mathrm{h}}$ Irregular double wave in Dec. $\left(-3^{\prime}\right.$ to $\left.+3^{\prime}\right)$. 19^{h} to $20 \frac{1_{2}^{\mathrm{h}}}{}$ Double wave in H.F. (-0012 to $+\circ 010$). $19{ }^{1 \frac{1}{4}}$ to $2 \mathrm{I}^{\mathrm{h}}$ Wave in Dec. $\left(-7^{\prime}\right)$.
 till $23^{\frac{1}{2^{1}}}$ by an irregular wave $\left(-6^{\prime}\right)$. $200_{4}^{3 \mathrm{~h}} \cdot$ to 22^{h} Wave in H.F. $(+\cdots 0024)$.
$4^{\mathrm{d}} 17^{\frac{1}{2} \mathrm{~h}}$ to 18^{h} Decrease in Dec. $\left(-5^{\prime}\right)$. $17^{\frac{1}{2} \mathrm{~h}}$ to $18 \frac{3}{4} \mathrm{~h}$ Wave in H.F. (-0011). $19 \frac{3 \mathrm{~h}}{} \mathrm{~h}^{\mathrm{h}}$ to 21^{h} Wave in H.F. ($+\cdot 0011$), followed till 23^{h} by a double wave (+0016 to -.0012). $20 \frac{3 h^{h}}{}$ to $23^{\frac{3 \mathrm{~h}}{}}$ Truncated wave in Dec. (-14^{\prime}).
$5^{d} 22^{\frac{1 \mathrm{~h}}{4}}$ to 23^{h} Wave in Dec. $\left(-3^{\prime}\right)$.
$11^{\mathrm{d}} 19 \frac{1}{2}^{\mathrm{h}}$ to $20 \frac{1}{2}^{\mathrm{h}}$ Wave in Dec. $\left(-4^{\prime}\right)$. $21 \frac{1}{2}^{\mathrm{h}}$ to $22 \frac{1}{2}^{\mathrm{h}}$ Wave in Dec. $\left(-4^{\prime}\right)$.
 $18 \frac{1}{4}$ to $18 \frac{1^{\mathrm{h}}}{}$ Very sharp triple wave in H.F. $(+.0014,-.0013$, +0014), followed by very sharp fluctuations till 21^{11} : fluctuations also in Dec.

$16^{\mathrm{d}} 2 \frac{1}{2}^{\frac{1}{2}}$ to $22 \frac{1_{2}^{\mathrm{b}}}{}$ Wave in Dec. $\left(-4^{\prime}\right)$.
$17^{\mathrm{d}} 1_{2^{\frac{1}{2}}}$ to $2 \frac{1}{2}^{\mathrm{h}}$ Wave in Dec. $\left(+4^{\prime}\right)$. $17^{\frac{1^{h}}{}}$ to $19^{\text {h }}$ Very steep wave in Dec. $\left(-19^{\prime}\right)$: double wave in H.F.
 $22 \frac{3 \mathrm{~h}}{}$ to $23 \frac{3 \mathrm{~h}}{4}$ Irregular wave in Dec. $\left(-5^{\prime}\right)$, followed till $18^{\mathrm{d}} \frac{13 \mathrm{hh}}{4}$ by a Hat-crested wave $\left(-5^{\prime}\right)$.

$18^{\mathrm{d}} 15^{\frac{1 \mathrm{~h}}{}}$ to $16 \frac{1 \mathrm{~h}}{4}$ Wave in H.F. (-0010) : in Dec. small.
 Irregular double wave in H.F. $\left(+.0010\right.$ to -0014). 19^{h} to $21^{\text {h }}$ Irregular wave in Dec. $\left(-10^{\prime}\right)$,
 and H.F. (+0025), both steep at commencement. ${20^{d}}^{2} 33^{\frac{1 \mathrm{~h}}{2}}$ to $2 \mathrm{I}^{\mathrm{d}} 0^{\frac{1}{\mathrm{~h}}}{ }^{\mathrm{h}}$ Irregular wave in H.F. (- - OO12) : in Dec. small.
$21^{\mathrm{d}} 8^{\mathrm{h}}$ to $8 \frac{1}{2}^{\mathrm{h}}$ Decrease in H.F. (-0016). 17^{h} to 18^{h} Wave in H.F. (-0015). $17 \frac{11}{4}^{\mathrm{h}}$ to $188^{\frac{3}{h}}$ Wave in
 successive waves in Dec. (-5^{\prime} and -4^{\prime}), both steep at commencement.
$22^{\text {d }} 20 \frac{1}{4}^{h}$ to $23^{\frac{3 b}{4}}$ Wave in H.F. $(+0012)$. $21^{1 \frac{1}{4}}$ to $21^{\frac{3}{4} h}$ Decrease in Dec. $\left(-4^{\prime}\right)$.
$23^{d} 2^{\text {h }}$ to $3^{\frac{1}{2}}{ }^{\text {b }}$ Wave in Dec. $\left(+5^{\prime}\right)$.
$24^{\mathrm{d}} 1 \frac{1}{2}^{\mathrm{h}}$ to 13^{h} Wave in H.F. (-0018). $11 \frac{3}{4}_{4}^{\mathrm{h}}$ to $12 \frac{1}{2}^{\mathrm{h}}$ Wave in Dec. $\left(-3^{\prime}\right) .153^{\frac{3 \mathrm{~h}}{}}$ to $16 \frac{1 \mathrm{l}}{4}$ Decrease in H.F. (- ooro). 16^{h} to $17 \frac{11^{\mathrm{h}}}{}$ Wave in Dec. $\left(-3^{\prime}\right)$.
$25^{\mathrm{d}} 14^{\mathrm{h}}$ to $14^{\frac{1}{2}}$ Wave in Dec. $\left(-3^{\prime}\right)$. 14^{h} to $\mathrm{I}_{4} 1^{\mathrm{h}}$. Double wave in H.F. $(+0013$ to -0013), the first portion triple crested. 15^{h} to $166^{\frac{3 \mathrm{~h}}{}}$ Double wave in Dec. $\left(+4^{\prime}\right.$ to $\left.-4^{\prime}\right)$. $163^{\frac{3}{\mathrm{~h}}}$ to 19^{h} Irregular double wave in H.F. (+.0015 to -.0015), the first portion double-crested. $17 \frac{14^{\frac{4}{4}}}{}$ to $18 \frac{3 \mathrm{ah}}{4}$ Three successive waves in Dec. ($-4^{\prime},-3^{\prime},-4^{\prime}$).
$26^{\mathrm{d}} 19^{\text {h }}$ to 20^{h} Irregular wave in Dec. $\left(-3^{\prime}\right)$.
$27^{\mathrm{d}} 18 \frac{3 \mathrm{~h}}{4}$ to 20^{h} Wave in Dec. $\left(-7^{\prime}\right)$; steep at commencement.
$28^{\mathrm{d}} 4^{\mathrm{h}}$ to $5^{\frac{1 \mathrm{~h}}{} \mathrm{~h}}$ Wave in Dec. $\left(+3^{\prime}\right)$. $21^{\frac{11 \mathrm{~h}}{\mathrm{~h}}}$ to 23^{h} Double wave in Dec. $\left(+3^{\prime}\right.$ to $\left.-7^{\prime}\right)$, the intermediate portiou steep. $21 \frac{3 \mathrm{~h}}{4}$ to $22 \frac{1}{2}^{\mathrm{h}}$ Wave in H.F. (+0012).
1910.

March $\quad I^{d} 2^{h}$ to $3 \frac{1}{2}^{h}$ Wave in Dec. $\left(-3^{\prime}\right)$. $\quad 18 \frac{11^{h}}{}$ to $18 \frac{1^{h}}{}$ Decrease in Dec. $\left(-4^{\prime}\right)$.
$2^{\mathrm{d}} 0 \frac{1 \mathrm{~h}}{}{ }^{\mathrm{h}}$ to $\mathrm{I}_{2}{ }^{\mathrm{h}}$ Wave in Dec. $\left(-3^{\prime}\right)$. $19 \frac{3}{4}^{\mathrm{h}}$ to ${ }^{20} \frac{3}{4}^{\mathrm{h}}$ Wave in Dec. $\left(-6^{\prime}\right)$.
$3^{\mathrm{d}} 19 \frac{3 \mathrm{~h}}{4}$ to $2 \mathrm{I}^{\mathrm{h}}$ Double-crested wave in Dec. $\left(-4^{\prime}\right)$.
$4^{\mathrm{d}} 19^{\mathrm{h}}$ to 20^{h} Wave in H.F. ($-\cdot 0018$), immediately followed by a sharp decrease ($-\cdot 0020$). I $9 \frac{1}{2}{ }^{\mathrm{h}}$ to $21 \frac{1}{2}{ }^{\mathrm{h}}$ Wave in Dec. $\left(-16^{\prime}\right)$, steep at commencement, with small waves superposed on the return. $20 \frac{1}{2}^{\mathrm{h}}$ to $22 \frac{1}{2}^{\mathrm{h}}$ Irregular wave in H.F. (- 0020).
$5^{\mathrm{d}} \frac{1}{2}^{\mathrm{h}}$ to $2 \frac{1}{2}^{\mathrm{h}}$ Double wave in Dec. $\left(+3^{\prime}\right.$ to $\left.-3^{\prime}\right)$: wave in H.F. (+001 I). $8 \frac{1}{2}^{\mathrm{h}}$ to $9 \frac{3}{4}{ }^{\mathrm{h}}$ Wave in H.F. (- \circ OOII). 16^{h} to 18^{h} Wave in H.F. $(-\cdot 0017)$. 18^{h} to 193^{h} Wave in Dec. $\left(-5^{\prime}\right)$.
$6^{\mathrm{d}} 0^{\mathrm{h}}$ to 1^{h} Wave in Dec. $\left(+6^{\prime}\right)$. $0 \frac{1}{2}^{\mathrm{h}}$ to 2^{b} Wave in H.F. $(+.0018)$. $0 \frac{1}{2}^{\mathrm{h}}$ to 1^{h} Decrease in V.F. (-0004). 16^{h} to $18 \frac{3 \mathrm{~h}}{}{ }^{\mathrm{h}}$ Two successive flat-crested waves in H.F. (-.0014 and - 0012). $18 \frac{1}{4}^{\mathrm{h}}$ to 19^{h} Wave in Dec. $\left(-4^{\prime}\right)$. 19^{h} to $19 \frac{3 \mathrm{~h}}{}{ }^{\mathrm{h}}$ Wave in Dec. $\left(-5^{\prime}\right)$, followed till 21^{h} by a triple-crested wave $\left(-6^{\prime}\right)$. 19^{h} to $20 \frac{1}{4}^{\mathrm{h}}$ Sharp triple wave in H.F. (-.0010, $+.0022,-\cdot 010$), followed till $21 \frac{3 \mathrm{~h}}{}{ }^{\mathrm{h}}$ by a double wave (-.0014 to $+0018) .21^{\mathrm{h}}$ to $2 \mathrm{I}^{\frac{1}{4}}{ }^{\mathrm{h}}$ Sharp decrease in Dec. $\left(-4^{\prime}\right)$, immediately followed till 22^{h} by a sharp irregular
 H.F. (-0018). $6^{\mathrm{d}} 23 \frac{1}{2}^{\mathrm{h}}$ to $7^{\mathrm{d}} \mathrm{I}_{2}^{\mathrm{h}}$ Two successive waves in Dec. $\left(-5^{\prime}\right.$ and -5^{\prime}).
$7^{\mathrm{d}} 2 \frac{1}{2}^{\mathrm{h}}$ to 5^{h} Irregular slow wave in Dec. $\left(+6^{\prime}\right)$. $5 \frac{3 \mathrm{~h}}{}{ }^{\mathrm{h}}$ to $7 \frac{3 \mathrm{~h}}{4}$ Slow wave in H.F. ($-{ }^{\circ} \mathrm{OO} 12$)
 wave in Dec. $\left(-3^{\prime}\right)$: small sharp double wave in H.F.
$9^{\mathrm{d}} 23^{\mathrm{h}}$ to $23^{\frac{1 \mathrm{~h}}{}}$ Sharp decrease in Dec. $\left(-4^{\prime}\right)$.
$10^{\mathrm{d}} 20^{\mathrm{h}}$ to $20 \frac{3^{\mathrm{h}}}{} \mathrm{h}$ Wave in Dec. $\left(-7^{\prime}\right)$, steep at commencement. $20 \frac{1}{2}^{\mathrm{h}}$ to 21^{h} Sharp wave in H.F. ($+\cdot 00 \mathrm{II}$). 21^{h} to $22 \frac{33^{h}}{}{ }^{\text {b }}$ Wave in Dec. $\left(-3^{\prime}\right) . \quad 23^{h}$ to 24^{h} Irregular wave in Dec. $\left(+3^{\prime}\right)$.
$1 I^{\mathrm{d}} 22 \frac{1}{4}^{\mathrm{h}}$ to $22 \frac{3 \mathrm{~h}}{4}$ Wave in Dec. $\left(+3^{\prime}\right)$. $11^{\mathrm{d}} 23^{\frac{1}{4}}$ to $\mathrm{I}^{\mathrm{d}} 0^{\frac{1}{2}}{ }^{\mathrm{h}}$ Waves in Dec. $\left(-3^{\prime}\right)$ and H.F. $(+\cdot 0010)$.

$14^{\mathrm{d}} 0 \frac{1}{2}^{\mathrm{h}}$ to $2 \frac{1}{2}^{\mathrm{h}}$ Double wave in Dec. $\left(+3^{\prime}\right.$ to -4^{\prime}). $\circ \frac{1}{2}^{\mathrm{h}}$ to 2^{h} Wave in H.F. $(+0022)$. $\mathbf{1}^{\mathrm{h}}$ to $2 \frac{1}{2} \mathrm{~h}$ Wave in V.F. $(-\cdot 0004) .4^{\mathrm{h}}$ to $5 \frac{1}{2}{ }^{\mathrm{h}}$ Waves in Dec. $\left(-4^{\prime}\right)$ and H.F. ($+\cdot 0011$). $17 \frac{1}{4}^{\mathrm{h}}$ to $18 \frac{1}{2} \mathrm{~h}$ Flat-crested wave in H.F. (- 0011), with small sharp wave superposed at $18^{\mathrm{h}}(-.0005)$. $14^{\mathrm{d}} 23^{3 \frac{3}{4}}$ to $15^{\mathrm{d}} 0 \frac{1}{2}{ }^{\mathrm{h}}$ Wave in Dec. $\left(-4^{\prime}\right)$: in H.F. small.
$15^{\text {d }} 18 \frac{1}{2}^{\mathrm{h}}$ to $17^{\mathrm{d}} 15^{\frac{1}{2}}{ }^{\mathrm{h}}$ Loss of Dec. and H.F. registers.
$17^{\mathrm{d}} 2 \mathbf{1}^{\mathrm{h}}$ to $\mathbf{2 2}^{\mathrm{h}}$ Sharp wave in Dec. $\left(-2 \mathrm{I}^{\prime}\right)$: wave in H.F. $(+\cdot 0018)$: in V.F. small.
$19^{d} 23^{\mathrm{h}}$ to 24^{h} Wave in H.F. (+ . 0019). $19^{\mathrm{d}} 23^{\mathrm{h}}$ to $20^{\mathrm{d}} 0 \frac{1}{2}^{\mathrm{h}}$ Flat-crested wave in Dec. (-3').
 Irregular decrease in Dec. $\left(-6^{\prime}\right)$. $20^{\mathrm{d}} 22^{\mathrm{h}}$ to $2 \mathrm{I}^{\mathrm{d}} \mathbf{1}^{\mathrm{h}}$ Quadruple wave in Dec. $\left(+3^{\prime},-4^{\prime},+5^{\prime},-3^{\prime}\right)$, followed till $\frac{12^{\frac{1}{2}}}{}$ by a sharp increase $\left(+7^{\prime}\right)$.
 $18 \frac{3 \mathrm{~h}}{}{ }^{\mathrm{h}}$ to $199^{\frac{3 \mathrm{~h}}{}}$ Wave in Dec. $\left(-8^{\prime}\right)$, steep at commencement.
$2^{\mathrm{d}} 0 \frac{3}{4}^{\mathrm{h}}$ to $2 \frac{1}{4}^{\mathrm{h}}$ Wave in Dec. $\left(+4^{\prime}\right)$. $21 \frac{1}{2}{ }^{\mathrm{h}}$ to $23 \frac{1}{2}^{\mathrm{h}}$ Two successive waves in Dec. $\left(-6^{\prime}\right.$ and $\left.-4^{\prime}\right)$.
$27^{\mathrm{d}} 2^{\mathrm{h}}$ to $6 \frac{1}{2}^{\mathrm{h}}$ Slow double wave in Dec. $\left(-6^{\prime}\right.$ to $\left.+4^{\prime}\right)$.
$27^{\mathrm{d}} 12^{\mathrm{h}}$ to $29^{\mathrm{d}} 12^{\mathrm{h}}$. See Plate I.

$30^{\mathrm{d}} 19^{\mathrm{h}}$ to $20 \frac{1}{4}^{\mathrm{h}}$ Double-crested wave in Dec. (-3^{\prime}) : small waves in H.F. $2^{\mathbf{h}}{ }^{\mathrm{h}}$ to 2^{h} Two successive waves in Dec. (-4^{\prime} and -5^{\prime}) and H.F. (+0013 and +0015). 22^{h} to $22 \frac{1}{2}^{\mathrm{h}}$ Irregular decrease in Dec. (-5^{\prime}), followed till 24^{h} by a double-crested wave $\left(+8^{\prime}\right) .22^{\frac{1}{2}}$ to $23 \frac{1}{2}^{\mathrm{h}}$ Irregular double-crested wave in H.F. $(+\cdot 0033)$: decrease in V.F. $(-\cdot 0009)$. $23 \frac{1}{2} \mathrm{~h}$ to $233^{\frac{3}{4}}$ Increase in H.F. $\left(+{ }^{\circ} 0013\right)$.
$31^{\mathrm{d}} 0^{\mathrm{h}}$ to 1^{h} Irregular double-crested wave in Dec. $\left(-4^{\prime}\right)$, followed till 5^{h} by an irregular triple wave (-6^{\prime}, $\left.+9^{\prime},-5^{\prime}\right)$. $0^{\text {h }}$ to 5^{h} Irregular quadruple wave in H.F. ($-0010,+.0014,-.0015,+.0017$).
 $53^{3 \mathrm{~h}}$ to $7 \frac{1}{4}^{\mathrm{h}}$ Wave in H.F. (-0018). $6 \frac{1}{2}^{\frac{2}{2}}$ to $7 \frac{1}{4}^{\mathrm{h}}$ Wave in Dec. $\left(+3^{\prime}\right)$. $13^{\frac{1 \mathrm{~h}}{}}$ to $14 \frac{1}{4}^{\mathrm{h}}$ Wave in H.F. $(-.0020)$. $13 \frac{1}{2}^{\mathrm{h}}$ to $144^{\frac{1 \mathrm{~h}}{}}$ Wave in Dec. $\left(-3^{\prime}\right)$. 14^{h} to $\mathrm{I} 5^{1 \mathrm{~h}}$ Increase in V.F. $(+.0010)$, followed till $16 \frac{1}{2} \mathrm{~h}$ by a wave (+ - OOIO), steep at commencement. $14 \frac{1}{2}^{\mathrm{h}}$ to 15^{h} Wave in Dec. $\left(-3^{\prime}\right)$. 15^{h} to $155^{\frac{1}{4}}$ Sharp decrease in Dec. $\left(-1 I^{\prime}\right)$, and sharp increase $\left(+6^{\prime}\right)$, immediately followed till $15 \frac{1}{2} \mathrm{~h}$ by another sharp decrease ($-{ }^{\prime} 8^{\prime}$), and increase $\left(+5^{\prime}\right)$, the increase continuing more slowly and irregularly till $5^{\mathrm{h}}\left(+10^{\prime}\right) .15^{\mathrm{h}}$ to $16 \frac{1 \mathrm{4}}{}{ }^{1 \mathrm{l}}$ Very sharp double wave in H.F. (-0020 to +.0022), followed by a wave $(+\cdot 0027)$, steep at commencement. $16 \frac{3 \mathrm{~h}}{4}$ to 18^{h} Double-crested wave in H.F. (-0014). 19 9^{h} to $19 \frac{3 \mathrm{~h}}{4}$ Wave in Dec. $\left(-4^{\prime}\right)$, followed till 20^{h} by a decrease $\left(-3^{\prime}\right) . \quad 20^{\mathrm{h}}$ to $2 \mathrm{I}^{\frac{1}{4} \mathrm{~h}}$ Quadruple wave in Dec. $\left(+4^{\prime}-3^{\prime},+4^{\prime},-5^{\prime}\right)$, followed till $222^{\frac{1}{h}}$ by a wave $\left(-8^{\prime}\right) . \quad 20^{\mathrm{h}}$ to $2 \mathrm{I}^{\mathrm{h}}$ Two successive waves in H.F. $\left(+.0018\right.$ and +0031), followed till 22^{h} by a double wave (+.0010 to -0014). 20^{h} to 21^{h}
 $1^{d} 0 \frac{1}{2}^{\mathrm{h}}$ Double-crested wave in Dec. $\left(-8^{\prime}\right)$, followed till $\mathrm{I} \frac{1}{4}^{\mathrm{h}}$ by a decrease $\left(-5^{\prime}\right)$.
1910.

April $\quad 1^{\mathrm{d}} 0^{\mathrm{L}^{\mathrm{h}}}$ to 3^{h} Irregular triple wave in H.F. ($+0011,-0012,+0010$), followed till 6^{h} by a slow irregular wave $(+0020)$. $I^{\frac{1}{4}}$ to 3^{h} Irregular flat-crested wave in Dec. $\left(+8^{\prime}\right)$. $\mathrm{I}_{\frac{1}{2}}{ }^{\text {h }}$ to $3^{\frac{3 \mathrm{~h}}{}{ }^{\mathrm{h}} \text { Truncated wave in }}$

 followed till $211_{4}^{1 \mathrm{~h}}$ by a double-crested wave (-6^{\prime}). $19 \frac{3}{4} \mathrm{~h}$ to 20^{h} Increase in H.F. $(+\cdot 0014$), followed

$2^{\mathrm{d}} 0^{\mathrm{h}}$ to $2 \frac{1}{4}^{\mathrm{h}}$ Irregular double wave in Dec. $\left(-4^{\prime}\right.$ to $\left.+8^{\prime}\right)$. I^{h} to $3^{\text {h }}$ Irregular double wave in H.F. (-0018
 Wave in H.F. $\left(-0013\right.$). $155^{\frac{3 \mathrm{~h}}{2}}$ to $16 \frac{1}{2}{ }^{\text {h }}$ Double wave in H.F. $(-0014$ to +0010$)$, followed till 18^{h} by two successive waves $\left(+0014\right.$ and ${ }^{\circ} 0013$). 16h to $16 \frac{1}{h}^{\text {h }}$ (Wave in Dec. $\left(-3^{\prime}\right)$, followed till $18 \frac{1}{2}{ }^{\mathrm{h}}$ by an irregular wave (-7^{\prime}). $188^{3 \mathrm{~h}}$ to $20 \frac{1 \mathrm{l}}{4}$ Triple-crested wave in Dec. (-12^{\prime}), the first crest steep. 19^{h} Sharp increase in H.F. $(+0015)$, continued till 1934 ${ }^{\frac{3 \mathrm{~h}}{}}$ by two successive waves ($+\circ 0015$ and +.0011).
 $(+\cdot 0022) . \quad 21_{4}^{1 b}$ to $22^{\text {h }}$ Irregular decrease in V.F. (-0005).
$3^{\mathrm{d}} \mathrm{I}^{1 \frac{1}{4}}$ to $\mathrm{I}^{\frac{3}{4} \mathrm{~h}}$ Wave in H.F. $(-0013$).
 Wave in H.F. (-0013). $15 \frac{3 \mathrm{~h}}{}{ }^{\mathrm{h}}$ to $16 \frac{3 \mathrm{~h}}{}$ D Double wave in H.F. $(-0013$ to +0015$)$. 16^{h} to $17 \frac{3}{4} \mathrm{~h}$ Truncated wave in Dec. (-8^{\prime}). 18^{h} to 20^{h} Irregular wave in H.F. $\left(+0015\right.$). $18 \frac{1}{2}^{\mathrm{h}}$ to 20^{h} Wave in Dec. (-6^{\prime}). $\quad 22^{\text {h }}$ to $24^{\text {h }}$ Double-crested wave in Dec. $\left(+4^{\prime}\right)$.
$5^{\mathrm{d}} 1^{\mathrm{h}}$ to 2^{h} Wave in Dec. $\left(-3^{\prime}\right) . \quad 20^{3 \mathrm{~h}}$ to 21^{h} Decrease in Dec. $\left(-3^{\prime}\right) .5^{\mathrm{d}} 23^{\frac{1 \mathrm{~h}}{\mathrm{~h}}}$ to $6^{\mathrm{d}} 0_{4}^{3 \mathrm{~h}}$ Wave in H.F. $(+\cdot 0015) . \quad 5^{\mathrm{d}} 23 \frac{1}{2}^{\frac{1 \mathrm{~h}}{2}}$ to $6^{\mathrm{d}} \mathrm{I}_{\frac{1}{2}}{ }^{\mathrm{h}}$ Two successive waves in Dec. $\left(+3^{\prime}\right.$ and $+3^{\text {d }}$).
$9^{d} I_{4}^{\frac{1 h}{h}}$ to $2 \frac{1 \mathrm{~h}}{4}$ Wave in Dec. $\left(-3^{\prime}\right)$: in H.F. small.

 to $\mathrm{I}^{4}{ }^{\mathrm{d}} \mathrm{I}^{\mathrm{h}}$ Wave in Dec. $\left(-\mathbf{4}^{\prime}\right)$.
$13^{\text {d }} 22 \frac{1}{4}^{h}$ to $22 \frac{3{ }^{h}}{4}$ Wave in H.F. $(+0013)$: in Dec. small.
$1^{6^{d}} 18 \frac{1^{h}}{}{ }^{h}$ to $19 \frac{3}{4}^{\frac{1}{h}}$ Wave in Dec. $\left(-4^{\prime}\right)$.
$17^{\mathrm{d}} 2^{\mathrm{h}}$ to 4^{h} Double wave in Dec. $\left(+2^{\prime}\right.$ to $\left.-3^{\prime}\right) .4^{\frac{3 \mathrm{~h}}{}{ }^{h}}$ to $6_{4}^{3}{ }^{h}$ Wave in Dec. $\left(-5^{\prime}\right) .6^{\mathrm{h}}$ to 7^{h} Wave in H.F. (-.0012).
 4^{h} to $4 \frac{1}{2}^{\mathrm{h}}$ Decrease in H.F. ($-\cdot 0025$), followed till 5^{h} by an irregular increase $(+\circ 011$), again followed till $5 \frac{1}{2}^{\frac{1}{h}}$ by a decrease (-0029). 4^{h} to 8^{h} Irregular wave in V.F. (-0010). $5^{\frac{3}{4}}$ to th $6 \frac{1}{2}^{\frac{1}{\mathrm{~h}}}$ Increase in Dec. $\left(+3^{\prime}\right)$. 8^{h} to $92^{1 \mathrm{~h}}$ Wave in Dec. (-5^{\prime}), with small superposed fluctuations. 14^{h} to 15^{h} Irregular wave in H.F. (-.0022), continued till $15^{\frac{1}{2}}$ by an increase $(+.0021)$. 16^{h} to 17^{h} Wave in H.F. $(+\circ 0017) . \quad 174^{\frac{3 \mathrm{~h}}{\mathrm{~h}}}$ to 19^{h} Wave in H.F. $(+\cdot 0016) . \quad 18 \frac{3 \mathrm{~h}}{}$ to 20^{h} Wave in Dec. $\left(-4^{\prime}\right)$, followed till $21 \frac{1}{2} \mathrm{~b}$ by an irregular double-crested wave $\left(-8^{\prime}\right) .200_{4}^{\mathrm{h}}$ to $20_{4}^{3 \mathrm{~h}}$ Double-crested wave in H.F. ($+\cdots 014$).
$19^{\text {d }} 1_{\frac{3 h}{4}}$ to 3^{h} Wave in Dec. $\left(+5^{\prime}\right)$. $4^{\frac{3}{4}}$ to $6_{4}^{\frac{1 \mathrm{~h}}{}}$ Wave in H.F. (-0015).
$2^{0^{d}} 0 \frac{33^{h}}{}$ to $\mathbf{2}^{\mathrm{h}}$ Wave in Dec. $\left(+3^{\prime}\right)$.
$220^{\text {d }} \mathbf{2 2}^{\text {h }}$ to $23^{\text {h }}$ Wave in H.F. $(+\cdot 0010)$.
 Dec. $\left(-8^{\prime}\right)$. $16^{3 \mathrm{~h}}$ to $18 \frac{12^{h}}{}$ Wave in H.F. $\left(+0023\right.$). $21^{\frac{1}{2} h}$ to $23^{\frac{3 \mathrm{~h}}{}{ }^{h}}$ Triple wave in Dec. $\left(-14^{\prime},+7^{\prime}\right.$,

$24^{\mathrm{d}} 7 \frac{1 \mathrm{~h}}{} \mathrm{~h}^{\mathrm{h}}$ to 88^{h} Wave in H.F. (-001 I).
$25^{\mathrm{d}} \circ^{\mathrm{h}}$ to 1^{h} Wave in Dec. $\left(+4^{\mathrm{h}}\right)$. o^{h} to $2 \frac{1}{2}^{\mathrm{h}}$ Flat-crested wave in H.F. $(+0015)$. $0 \frac{1 \mathrm{~h}}{2}$ to 2^{h} Decrease in V.F. (- -0006). $\quad \mathrm{I}_{2}^{\mathrm{h}}$ to 3^{h} Wave in Dec. $\left(-6^{\prime}\right)$.
$26^{\mathrm{d}} 22 \frac{1 \mathrm{~L}}{}{ }^{\mathrm{h}}$ to 24^{h} Irregular wave in H.F. $\left(+{ }^{\circ} \mathrm{OO} 6\right)$.
$27^{\mathrm{d}} 4^{\frac{1}{2}}{ }^{\mathrm{h}}$ to 7^{h} Irregular wave in Dec. $\left(+13^{\prime}\right)$, with superposed fluctuations. $4^{\frac{3}{4} \mathrm{~h}}$ to 6^{h} Irregular decrease in V.F. ($-\cdot 0009$). $5 \frac{1}{2}^{\text {h }}$ to $7 \frac{1}{2}^{h}$ Irregular fat-crested wave in H.F. (-0045), with superposed small fluctuations.
 $(+0016$ and +0016$)$. $11_{2}^{\frac{1 \mathrm{~h}}{}}$ to 12^{h} Irregular increase in Dec. $\left(+5^{\prime}\right)$. 12^{h} to $\mathrm{I}^{\frac{3 \mathrm{3h}}{4}}$ Increase in H.F. ($+\cdot 0024$), with superposed fluctuations. 12^{h} to $14^{\frac{1}{2} \mathrm{~h}}$ Increase in V.F. $(+0015)$, continued till 15^{h} by

 ${ }^{1} 5 \frac{1}{4}^{\text {h }}$ Sharp double wave in Dec. ($+4^{\prime}$ to -8^{\prime}). $15^{\text {h }}$ to 16^{h} Two successive sharp waves in H.F.
1910.

April
$(+\cdot 0022$ and $+\cdot 0026) . \quad 1 \frac{1}{2}^{\frac{1}{h}}$ to $17 \frac{1}{4}^{\mathrm{h}}$ Two successive irregular flat-crested waves in Dec. $\left(-7^{\prime}\right.$ and $\left.-5^{\prime}\right)$, the first with sharp superposed fluctuations. $15^{\frac{1}{2}}$ to 16^{h} Wave in V.F. $(+\circ 004)$. $16 \frac{1}{2}^{\mathrm{h}}$ to $16 \frac{1}{4}{ }^{\mathrm{h}}$ Increase in H.F. ($+\cdot 0013$). 17^{h} to $20^{\text {b }}$ Decrease in V.F. ($-\cdot 0011$). $183^{3 \mathrm{~h}}$ to 19^{h} Decrease in Dec. $\left(-3^{\prime}\right)$, continued till 20^{h} by two successive waves (-5^{\prime} and -4^{\prime}). 19^{h} to $19 \frac{1}{2}^{\mathrm{h}}$ Wave in H.F. ($+{ }^{\circ} \mathrm{OO} \mathrm{O}_{5}$), followed till $2 \mathrm{I}^{\frac{3 \mathrm{~h}}{4}}$ by an irregular triple wave ($+0012,-.0010,+.0022$), the third portion triple-crested. $20 \frac{1}{2}$ h to $21 \frac{3 \mathrm{~h}}{4}$ Irregular wave in Dec. $\left(-9^{\prime}\right) . \quad 20 \frac{1}{2}^{\mathrm{h}}$ to $20 \frac{3 \mathrm{~h}}{4}$ Decrease in V.F. (-0004).
$28^{\mathrm{d}} 8^{\mathrm{h}}$ to $8 \frac{1 \mathrm{~h}}{4}$ Decrease in H.F. (- -OOI2). $8 \frac{1}{2}^{\mathrm{h}}$ to $9 \frac{1}{2}^{\mathrm{h}}$ Wave in H.F. (-0010). 14^{h} to 144^{h} Very sharp
 (-0027). $14^{\frac{1}{2}}$ to 18^{h} Irregular triple wave in Dec. $\left(-4^{\prime},+4^{\prime},-8^{\prime}\right)$, $16 \frac{1}{4}^{\text {h }}$ to $1^{8^{\mathrm{h}}}$ Double wave in H.F. ($-\cdot 0020$ to +.0027). $22 \frac{3 h^{h}}{}$ to 24^{h} Truncated wave in Dec. $\left(+5^{\prime}\right) .23^{\mathrm{h}}$ to 24^{h} Wave in H.F. (+ -0012) : decrease in V.F. ($-\cdot 0005$).
$29^{\mathrm{d}} 0^{\mathrm{h}}$ to I^{h} Wave in Dec. $\left(+4^{4}\right)$. 10^{h} to $12 \frac{1}{4}^{\mathrm{h}}$ Wave in H.F. (-0018). 15^{h} to $16 \frac{1}{2 \mathrm{~h}}$ Two successive waves in H.F. (-0016 and -.0015), the first steep. $22 \frac{1 \mathrm{~h}}{}{ }^{\mathrm{h}}$ to 24^{h} Wave in H.F. $(+.0020)$. $22 \frac{33^{\mathrm{h}}}{}$ to 233^{h} Wave in Dec. $\left(+3^{\prime}\right)$.
 $\left(-3^{\prime}\right) . \quad 14^{\frac{1}{2}}$ to $15^{\text {h }}$ Decrease in Dec. $\left(-8^{\prime}\right)$. $14^{\frac{1}{h}}$ to $14^{\frac{3}{4} h}$ Decrease in H.F. (-0016), followed till 15^{h} by a very sharp increase $(+0038)$. ${ }^{144^{\frac{3}{4}}}$ to 16^{h} Wave in V.F. $(+\cdot 0003)$. $15 \frac{3 \mathrm{~h}}{4}$ to $16 \frac{3 \mathrm{~h}}{4}$ Wave in H.F. (-0020). $19 \frac{1}{2}^{\mathrm{h}}$ to $20 \frac{1}{2}^{\mathrm{h}}$ Waves in Dec. $\left(+3^{\prime}\right)$ and H.F. (-0010). $2 \mathbf{I}^{\mathrm{h}}$ to $2 \frac{1}{4}^{\mathrm{h}}$ Wave in H.F.
 in Dec. (-4^{\prime}).

$2^{\mathrm{d}} 2 \mathbf{1 3}_{4}^{\frac{3}{4}}$ to $22 \frac{1 \mathrm{~h}}{2}$ Increase in Dec. $\left(+4^{\prime}\right)$, followed by decrease $\left(-7^{\prime}\right) . \quad 22^{\mathrm{h}}$ to $2^{\frac{1}{1 \mathrm{~h}}}$ Wave in H.F. $(+\cdot 0020)$.

$3^{\mathrm{d}} 1^{\mathrm{h}}$ to 2^{h} Wave in H.F. $\left(+\cdot 0023\right.$). $1^{\frac{1}{2}}{ }^{\text {h }}$ to $2 \frac{1}{2}^{\text {h }}$ Wave in Dec. $\left(-7^{\prime}\right)$. $1^{\frac{1}{2}}{ }^{\text {h }}$ to $2^{\frac{1}{4} h}$ Wave in V.F. $(-.0003) . \quad 18^{\mathrm{h}}$ to 202^{h} Slow double-crested wave in Dec. $\left(-4^{4}\right) . \quad 3^{\mathrm{d}} \mathbf{2 3}^{\mathrm{h}}$ to $4^{\mathrm{d}} \mathrm{O}_{2}^{\mathrm{l}} \mathrm{h}$ Wave in H.F. (+ -001I).
 Decrease in V.F. (-0003).
$5^{\mathrm{d}} \circ_{\frac{1}{4}}{ }^{\mathrm{h}}$ to $\mathrm{I}_{\frac{1}{2}}{ }^{\mathrm{h}}$ Wave in Dec. $\left(+3^{\prime}\right)$.

$9^{\mathrm{d}} 20^{\mathrm{h}}$ to $20 \frac{1}{2}^{\mathrm{h}}$ Decrease in Dec. $\left(-4^{\prime}\right)$.
$11^{d} 18 \frac{3}{4}^{h}$ to $19 \frac{1}{2}^{h}$ Decrease in H.F. (-0018). 19^{h} to $199^{\frac{3 h}{h}}$ Decrease in Dec. $\left(-4^{\prime}\right)$.
$13^{\mathrm{d}} 3^{\mathrm{h}}$ to $4^{\frac{3 \mathrm{~h}}{4}}$ Wave in Dec. $\left(-7^{\prime}\right)$. 5^{h} to $5^{\frac{3 \mathrm{~h}}{4}}$ Wave in H.F. (-0015). $10 \frac{1}{4}^{\mathrm{h}}$ to 1^{h} Decrease in H.F. (-0019). 12^{h} to $133^{\frac{3 \mathrm{~h}}{4}}$ Irregular wave in H.F. (-0021). $12 \frac{11^{\mathrm{h}}}{}$ to 13^{h} Wave in Dec. $\left(+3^{\prime}\right)$. 15^{h} to ${ }^{1} 5^{1 \mathrm{~h}}$ Decrease in Dec. $\left(-9^{\prime}\right)$. $15^{\text {h }}$ to $15^{3 \mathrm{~h}}$ h Wave in H.F. $(-\cdot 0036)$, very sharp at commencement.
 $+.0018) .2^{\text {h }}$ to $24^{\text {b }}$ Wave in Dec. $\left(-5^{\prime}\right)$.
$14^{\mathrm{d}} 0^{\mathrm{h}}$ to $1^{\frac{1}{2}}$ Wave in Dec. $\left(-3^{\prime}\right)$. $4 \frac{1 \mathrm{4}}{} \mathrm{h}^{\mathrm{h}}$ to $5^{\frac{1}{2}}$ W Wave in Dec. $\left(+3^{\prime}\right)$. $6 \frac{1}{2}^{\mathrm{h}}$ to $7 \frac{1}{4}^{\mathrm{h}}$ Wave in Dec. $\left(+3^{\prime}\right)$. 17^{h} to $18 \frac{1 \mathrm{~h}}{2}$ Wave in H.F. $(+\circ 0013$).
$1^{\mathrm{d}} 0^{\mathrm{h}}$ to $\mathbf{1}^{\mathrm{h}}$ Irregular wave in Dec. $\left(+3^{\prime}\right)$. $0^{\frac{1}{4}}{ }^{\mathrm{h}}$ to $1^{\frac{3 \mathrm{~h}}{} \mathrm{~h}}$ Wave in H.F. $(+0012)$. $\circ_{\frac{1}{2}}{ }^{\mathrm{b}}$ to $\mathbf{1}^{\mathrm{h}}$ Decrease in
 Decrease in V.F. $(-\cdot 0003)$. 7^{h} to 9^{h} Irregular wave in Dec. $\left(+4^{\prime}\right) . \quad 7_{4}^{\frac{1 \mathrm{~h}}{}}$ to $9_{4}^{\frac{1 \mathrm{~h}}{}}$ Irregular wave in H.F. (- 0010).
$16^{\mathrm{d}} 4^{\mathrm{h}}$ to 5^{h} Wave in H.F. (- -0010).
$17^{\text {d }} 155^{\text {h }}$ to $16 \frac{1}{4}^{\text {h }}$ Irregular double wave in H.F. ($+\cdot 0014$ to $-\cdot 0013$).
 crested wave in H.F. (- 0023). 20^{h} to $2 \mathrm{I}^{\mathrm{h}}$ Double wave in H.F. (+0014 to -001 I). $20 \frac{1^{\mathrm{h}}}{}$ to
 $+{ }^{\circ} 002$ I).

 followed till 12^{h} by two successive sharp waves ($+0011^{2}$ and $+{ }^{\circ} 0019$): in Dec. small. $13^{\frac{1}{2}}$ to 15^{h} Flat-crested wave in H.F. (-001 I), followed till $16 \frac{1}{4}^{\text {h }}$ by a wave (-0015). $16 \frac{1}{2}^{\mathrm{h}}$ to $17 \frac{2}{2}^{\frac{1}{2}}$ Wave in H.F. (- 002 I), steep at commencement.

1910.

May $\quad 22^{\text {d }} 1^{\text {h }}$ to $2 \frac{3 \mathrm{~h}}{}{ }^{\mathrm{h}}$ Wave in Dec. $\left(+4^{\prime}\right)$.
$23^{\mathrm{d}} \mathbf{2 2}^{\mathrm{h}}$ to 23^{h} Waves in Dec. $\left(+4^{\prime}\right)$ and H.F. $(+\cdot 0015)$.
$24^{\text {d }} 0^{\mathrm{h}}$ Sudden decrease in H.F. (-0010). 11^{h} to 12^{h} Wave in H.F. (-0012). $13 \frac{1 \mathrm{~h}}{4}$ Sudden decrease in H.F. ($-\cdot 0008$), followed by slower increase $(+.0016)$. 14^{h} to 15^{h} Wave in H.F. (-.0022). 191h to $20 \frac{1}{4}^{h}$ Double-crested wave in H.F. (-.0012). $21^{\text {h }}$ to $21^{\frac{1}{4}}{ }^{\text {h }}$ Sharp increase in H.F. ($+\cdot 0016$), followed by slower partial return. $22 \frac{3 \mathrm{~h}}{4}$ to $23 \frac{1}{2}^{\mathrm{h}}$ Wave in Dec. ($-3^{\text {' }}$), followed till $25^{\mathrm{d}} 3^{\mathrm{h}}$ by an irregular triple wave $\left(+5^{\prime},-11^{\prime},+4^{\prime}\right) .24^{d^{d}} 23^{\mathrm{h}}$ to $25^{\mathrm{d}} 4^{\mathrm{h}}$ Slow double wave in H.F. (+0035 to - 0020).

$25^{\mathrm{d}} \mathrm{I}^{\mathrm{h}}$ to $2 \frac{3}{4} \mathrm{~h}$ Wave in V.F. $(+\cdot 0003)$. $4^{\frac{1}{2}}$ to $4 \frac{3 \mathrm{~h}}{4}$ Decrease in H.F. $(-$ ool 8$)$. 5^{h} to $77^{\frac{3}{4}}$ Wave in Dec. $\left(-5^{\prime}\right)$, with sharp superposed fluctuations. 7^{h} to $8 \frac{1 \mathrm{~h}}{4}$ Wave in H.F. (-0013). 14^{h} to $15^{1 \frac{1 \mathrm{~h}}{4}}$ Double wave in H.F. (-OOI2 to +0012). $144^{\frac{1}{2}}$ to $14^{\frac{3}{4}}{ }^{4}$ Decrease in Dec. (-3^{\prime}). $177^{\frac{1}{4}}$ to $17 \frac{3 \mathrm{~h}}{4}$ Decrease in Dec. (-10^{\prime}). $17 \frac{1}{2}^{\text {h }}$ to $19^{\text {h }}$ Double wave in H.F. (-0019 to $+\circ 016$), the first portion steep, the second irregular and double-crested. 18^{h} to $18 \frac{1}{4}^{h}$ Increase in Dec. $\left(+3^{\prime}\right) .20 \frac{33}{4}$ to $2^{\frac{h}{h}}$ Two successive sharp waves in Dec. $\left(+6^{\prime}\right.$ and $\left.+7^{\prime}\right) .20 \frac{3 \mathrm{~h}}{}{ }^{4}$ to $213^{h}{ }^{\mathrm{h}}$ Sharp double-crested wave in H.F. ($+\cdot 0023$).
 Waves in Dec. $\left(-3^{\prime}\right)$ and H.F. (+0011).
$2^{\mathrm{d}} 1_{2}^{1 \mathrm{~h}}$ to 3^{h} Wave in Dec. $\left(+4^{\prime}\right)$. 5^{h} to 7^{h} Irregular wave in Dec. $\left(+3^{\prime}\right)$: wave in H.F. (- -0019). $\quad 19^{\mathrm{h}}$ to $19^{\frac{1 \mathrm{~h}}{4}}$ Decrease in Dec. $\left(-6^{\prime}\right)$. $199^{\frac{1 \mathrm{~h}}{}}$ to $19^{\frac{1}{2}}{ }^{\mathrm{h}}$ Increase in H.F. (+0015).

$28^{\mathrm{d}} 0 \frac{3 \mathrm{~h}}{4}$ to $1_{2}^{1 \mathrm{~h}}$ Wave in Dec. $\left(+3^{\prime}\right)$. 2^{h} to 4^{h} Wave in Dec. $\left(-4^{\prime}\right)$. 15^{h} to $15^{\frac{1}{2}}{ }^{\mathrm{h}}$ Decrease in Dec, $\left(-6^{\prime}\right)$. 15^{h} to ${ }_{1} 6^{\mathrm{h}}$ Double wave in H.F. (-.0010 to $+\cdot 0012$). 19^{h} Sudden increase in Dec. $\left(+4^{\prime}\right)$, followed till $19 \frac{3}{4}^{\mathrm{h}}$ by decrease $\left(-8^{\prime}\right)$: sudden increase in H.F. ($+\cdot 0020$), followed till $19 \frac{1}{2}^{\mathrm{h}}$ by decrease (-0026).
 4^{h} to $5^{\frac{1}{2} \mathrm{~h}}$ Wave in H.F. (- -0010).
$3^{\text {d }} 15 \frac{3 \mathrm{~h}}{4}$ to $16 \frac{3 \mathrm{~h}}{4}$ Wave in H.F. $(-0013) .22 \frac{1}{2}^{\mathrm{h}}$ to $23^{\frac{1 \mathrm{~h}}{}} \mathrm{~h}$ Wave in Dec. $\left(-3^{\prime}\right)$, followed till $31^{\mathrm{d}} 1^{\mathrm{h}}$ by a flatcrested wave $\left(-3^{\prime}\right)$.
$31^{\mathrm{d}} 2^{\frac{1}{4}}{ }^{\mathrm{h}}$ to $4^{\frac{1}{2}} \mathrm{~h}$ Two successive waves in Dec. $\left(+4^{\prime}\right.$ and $+3^{\prime}$). $3^{\frac{1}{2}}{ }^{\mathrm{h}}$ to $5 \frac{1}{2}^{\mathrm{h}}$ Wave in H.F. $(+\circ 012)$. 13^{h} to $14 \frac{1}{2}^{\frac{\mathrm{h}}{}}$ Truncated wave in H.F. (- 0012). $154^{\frac{1}{h}}$ to 17^{h} Two successive waves in H.F. (-0011 and -.0012).

June $\quad 8^{d} 14^{\mathrm{h}}$ to 18^{h} Irregular sextuple wave in H.F. $\left(+0017,-0012,+0019,-0018,+\cdot 0028,-{ }^{\circ} 0016\right)$, followed by fluctuations till 23^{h}. $15 \frac{1}{4}^{\mathrm{h}}$ to 16^{h} Wave in Dec. $\left(+3^{\prime}\right)$. $17 \frac{1}{4}^{\mathrm{h}}$ to $17^{\frac{3}{4}}{ }^{\mathrm{h}}$ Decrease in Dec. $\left(-5^{\prime}\right)$.
$9^{d} 10^{\mathrm{h}}$ to 11^{h} Wave in H.F. $(-\cdot 0013)$. 14^{h} to 17^{h} Quintuple wave in H.F. (- $-0009,+\cdot 0010,-\cdot 0009$, $+\cdot 0014,-0012)$. $18 \frac{1}{2}$ h to 20^{h}. Two successive waves in Dec. $\left(-3^{\prime}\right.$ and $\left.-3^{\prime}\right)$ and H.F. $(+\cdot 0014$ and $+\circ 0015$).

$11^{\mathrm{d}} 3^{\frac{1 \mathrm{~h}}{} \mathrm{~h}}$ to $4^{3 \mathrm{~h}}$ Irregular wave in Dec. $\left(+3^{\prime}\right)$. 15^{h} to $155^{\frac{3 \mathrm{~h}}{4}}$ Wave in H.F. $(+0014)$. 17^{h} to $18 \frac{1}{2} \mathrm{~h}$ Wave in H.F. $(+\cdot 0015)$. $18 \frac{3 \mathrm{~h}}{4}$ Sharp decrease in Dec. $\left(-3^{\prime}\right) . \quad 21^{1 \mathrm{~h}}$ to 23^{h} Double-crested wave in Dec. (-5^{\prime}). $12^{\mathrm{d}} 14 \frac{1}{2}^{\mathrm{h}}$ to $15^{\frac{1}{2}}{ }^{\mathrm{h}}$ Double-crested wave in H.F. (- -0010).
$13^{\mathrm{d}} 15^{\mathrm{h}}$ to $16 \frac{1}{2}{ }^{\mathrm{h}}$ Double wave in H.F. (-.0012 to +.0012).
$16^{\mathrm{d}} 10^{\mathrm{h}}$ to 15^{h} Loss of Dec., H.F. and V.F. Registers.
$20^{d} 0^{h}$ to $21^{d} 0^{h}$ See Plate II.
$21^{d} 3^{h}$ to 6^{h} Small sharp fluctuations in Dec. and H.F. $18 \frac{3 \mathrm{~h}}{}{ }^{\mathrm{h}}$ to $20 \frac{1}{4}^{\mathrm{h}}$ Flat-crested wave in Dec. (-6^{\prime}): wave in H.F. (+0026), steep at commencement. $211^{\frac{3}{4}}$ to 23^{h} Double-crested wave in H.F. (+0031). 22^{h} to 23^{h} Double wave in Dec. $\left(+3^{\prime}\right.$ to $\left.-6^{\prime}\right) . \quad 22^{\mathrm{h}}$ to $22 \frac{1}{4}^{\mathrm{h}}$ Decrease in V.F. (-0005). $21^{\mathrm{d}} \quad 23^{\mathrm{h}}$ to $22^{d} I^{\mathrm{h}}$ Double wave in Dec. $\left(-5^{\prime}\right.$ to $\left.+7^{\prime}\right)$, the second portion double-crested.
 $\left(-3^{\prime}\right)$ and H.F. ($+\cdot 0010$).
$23^{\mathrm{d}} 2^{\mathrm{h}}$ to $3 \frac{4}{4}_{\mathrm{h}}^{4}$ Wave in Dec. $\left(+3^{\prime}\right)$. 2^{h} to 3^{h} Wave in H.F. (-0010). $23^{\mathrm{d}} 23^{\frac{1}{2}}{ }^{\mathrm{h}}$ to $24^{\mathrm{d}} 1^{\mathrm{h}}$ Wave in Dec. $\left(+6^{\prime}\right)$.
 $25^{\mathrm{d}}{ }^{21} \frac{1}{4}^{\mathrm{h}}$ to $22 \frac{1}{4}^{\mathrm{h}}$ Wave in H.F. $(+\cdot 0012)$: in Dec. small.
$26^{\mathrm{d}} 3 \frac{1}{2}^{\mathrm{h}}$ to $4^{\frac{1}{2} \mathrm{~h}}$ Wave in Dec. $\left(+3^{\prime}\right)$. $12 \frac{1_{2}^{\mathrm{h}}}{}$ to $13 \frac{1^{\mathrm{h}}}{4}$ Wave in H.F. $\left(-\infty \cdot 010\right.$.) $16 \frac{1}{2}{ }^{\mathrm{h}}$ to $17 \frac{1}{2}^{\mathrm{h}}$ Wave in H.F. $(+\cdot 0010) . \quad 173^{\frac{3}{4}}$ to 19^{h} Waves in Dec. $\left(-5^{\prime}\right)$ and H.F $(+\cdot 0024)$.
$29^{\mathrm{d}} 17^{\mathrm{h}}$ to $199^{\frac{1 \mathrm{~h}}{}}$ Two successive waves in H.F. ($-\cdot 0016$ and -.0015). $18 \frac{1}{2}^{\mathrm{h}}$ to 19^{h} Decrease in Dec. (-5^{\prime}). $19 \frac{3 \mathrm{~h}}{}$ to 20^{h} Decrease in Dec. $\left(-5^{\prime}\right)$. $19 \frac{3 \mathrm{~h}}{4}$ to $20 \frac{1}{2}^{\mathrm{h}}$ Wave in H.F. $(+0018)$. 20^{h} to 22^{h} Two successive waves in Dec. $\left(-4^{\prime}\right.$ and $\left.-4^{\prime}\right)$. $20 \frac{3 \mathrm{~h}}{}{ }^{\mathrm{h}}$ to 21^{h} Sharp decrease in H.F. $\left(-{ }^{\circ} 0020\right)$.
1910.

July
$4^{\mathrm{d}} 2 \mathbf{1}^{\frac{3 \mathrm{~h}}{4}}$ to $23^{\frac{1 \mathrm{~b}}{\mathrm{~b}}}$ Flat-crested wave in H.F. (-0012).
$5^{\mathrm{d}} \mathrm{I}^{1 \mathrm{~h}}$ to $4^{\frac{1 \mathrm{~h}}{} \mathrm{~h}}$ Irregular double wave in H.F. (+0016 to -.0024) with superposed fluctuations. 2^{h} to $4^{3 \mathrm{~h}}$ Double wave in Dec. $\left(-6^{\prime}\right.$ to $\left.+12^{\prime}\right) . \quad 3^{\mathrm{h}}$ to $5^{\frac{1}{\mathrm{~h}}}$ Irregular double wave in V.F. $(+0002$ to -0003). $4^{\frac{3}{4} \mathrm{~h}}$ to $7 \frac{1}{4}^{\mathrm{h}}$ Irregular wave in H.F. (-0018). $5 \frac{1}{2}{ }^{\mathrm{h}}$ to 7^{h} Wave in Dec. $\left(+7^{\prime}\right) .7 \frac{3^{\mathrm{h}}}{}{ }^{\mathrm{h}}$ to $8 \frac{1}{2}^{\frac{\mathrm{h}}{}}$ Wave in
 16^{h} to 164^{h} Increase in H.F. $(+0016)$. $16 \frac{33^{\mathrm{h}}}{}$ to 17^{h} Sharp decrease in Dec. $\left(-6^{\prime}\right)$, continued till 18^{h} by a double-crested wave (-7^{\prime}), steep at commencement. $16 \frac{3 \mathrm{~h}}{}{ }^{\mathrm{h}}$ to 18^{h} Triple wave in H.F. (-0025 , $+0020,-0010$), followed till 19^{h} by a wave (-0016). 17^{h} to $173^{\frac{3}{4}}$ Wave in V.F. $(+0003)$. $21^{\text {h }}$ to $\mathbf{2 2}^{\text {h }}$ Wave in Dec. $\left(-4^{\prime}\right)$: in H.F. small.
$6^{\mathrm{a}} 0^{\mathrm{h}}$ to 3^{h} Two successive waves in Dec. $\left(+4^{\prime}\right.$ and $\left.+4^{\prime}\right)$. 0^{h} to 1_{2}^{h}. Wave in H.F. $(+0016)$. 4^{h} to $5 \frac{33^{\mathrm{h}}}{}$

 $20 \frac{3 \mathrm{~h}}{}{ }^{\mathrm{h}}$ to $21^{1 \mathrm{~h}}$ Wave in Dec. $\left(-3^{\prime}\right)$: in H.F. small.
$9^{d} 183^{\frac{3}{4}}$ to $19 \frac{1}{2}^{\mathrm{h}}$ Wave in H.F. (-oori).

$15^{\mathrm{d}} 16^{\mathrm{h}}$ to $16 \frac{1}{2}^{\mathrm{h}}$ Decrease in H.F. (- -ooro).
$2^{0^{d}} 21^{\mathrm{h}}$ to $21_{\frac{1}{2}}{ }^{\mathrm{h}}$ Wave in Dec. $\left(-4^{\prime}\right)$: in H.F. small.
$22^{\mathrm{d}} 14_{4^{\mathrm{h}}}$ to $15^{\frac{1}{2}}$. Double wave in H.F. $(+0010$ to -0008), the intermediate portion steep.

$24^{\mathrm{d}} \mathrm{o}^{\mathrm{h}}$ to $4^{\frac{3}{4} \mathrm{~h}}$ Irregular quadruple wave in Dec. $\left(-3^{\prime},+4^{\prime},-4^{\prime},+3^{\prime}\right)$. 1^{h} to 3^{h} Irregular wave in H.F. $(+.0024) . \quad 1^{\mathrm{h}}$ to $4^{\frac{1 \mathrm{~h}}{}}$ Slow wave in V.F. ($-{ }^{\circ} \mathrm{OOO4}$).

 wave in H.F. ($+\cdot 0008$ to -.0014). 2^{h} to $4^{\frac{1}{4} \mathrm{~h}}$ Slow wave in V.F. (-0003). $2^{\frac{3}{4} \mathrm{~h}}$ to 5^{h} Irregular double wave in H.F. $(+.0008$ to -0011$)$. $12 \frac{12^{h}}{2}$ to 13^{h} Wave in H.F. $(+\circ 0010)$. $13 \frac{1}{2}^{\mathrm{h}}$ to 14^{h} Wave

$30^{\mathrm{d}} \circ \frac{\frac{1}{4}^{\mathrm{h}}}{}$ to $\frac{1}{4}^{\frac{1 \mathrm{~h}}{2}}$ Wave in Dec. $\left(+3^{\prime}\right)$.

August $\quad 1^{\mathrm{d}} 13^{\mathrm{h}}$ to $14^{\frac{1}{4} \mathrm{~h}}$ Wave in H.F. (+ . 0015), followed by very sharp fluctuations till $14 \frac{1^{\mathrm{h}}}{}$: small fluctuations in Dec. and V.F. $5^{14^{\text {h }}}$ to $17^{\frac{3}{4}}$ Triple wave in H.F. $(+\cdot 0026,-\cdot 0019,+\cdot 0010)$, the second portion doublecrested.

$4^{\mathrm{d}} \circ^{\frac{1 \mathrm{~h}}{2}}$ to $1 \frac{1}{2}^{\mathrm{h}}$ Wave in Dec. $\left(+4^{\text {' }}\right.$). 11_{4}^{hh} to $12^{\frac{3}{4} \mathrm{~h}}$ Wave in H.F. (-0014). 16^{h} to 17^{h} Wave in H.F. (-0012). $16 \frac{3 \mathrm{~h}}{}{ }^{\mathrm{h}}$ to $17^{\text {4 }}$ Sharp decrease in Dec. (-5^{\prime}).

$9^{d} 23 \frac{3 \mathrm{~h}}{4}$ to $1 \mathrm{o}^{\mathrm{d}} \mathrm{O}_{\frac{3 \mathrm{~h}}{4}}$ Wave in H.F. $(+\cdot 0010)$.
 H.F. $(+\cdot 0030)$, followed till $5^{34^{\mathrm{h}}}$ by an irregular decrease (-0065), very steep after $5^{\mathrm{h}} .3 \frac{1}{4}^{\mathrm{h}}$ to $5 \frac{3 \mathrm{~h}}{}{ }^{\mathrm{h}}$ Irregular wave in V.F. (-0003). 5^{h} to $5_{4}^{3 \mathrm{~h}^{\mathrm{h}}}$ Irregular increase in Dec. $\left(+7^{\prime}\right)$, steep at times. 6^{h} to $73^{\frac{3}{4}}$ Irregular double wave in Dec. $\left(+5^{\prime}\right.$ to $\left.-5^{\prime}\right)$. $6 \frac{1}{4}^{\mathrm{h}}$ to 7^{h} Double-crested wave in H.F. $(+0012)$. $7^{\frac{1}{4} \mathrm{~h}}$ to 8^{h} Wave in H.F. (-0012). $10 \frac{1 \mathrm{l}}{4}$ to $11^{\mathrm{h}} \mathrm{W}^{4}$ ave in H.F. (-0014). $16 \frac{1}{2}^{\mathrm{h}}$ to 17^{h} Decrease in

 $(+\cdot 0003)$. $193^{3 \mathrm{~h}}$ to $20 \frac{1}{2}^{\mathrm{h}}$ Two successive waves in Dec. $\left(+5^{\prime}\right.$ and $\left.+4^{\prime}\right)$, and H.F. $(+\cdot 0011$ and $+\cdot 0016$).
$11^{\text {d }} 12 \frac{12^{h}}{}$ to $12 \frac{34^{h}}{}$ Sharp wave in H.F. (-0012): in Dec. small. $17^{\text {h }}$ to 18^{h} Wave in H.F. (-0014). ${ }^{1} 7_{4}^{\frac{1}{4}}$ to 19^{h} Wave in Dec. $\left(-4^{\prime}\right)$.
$13^{\mathrm{d}} 22 \frac{1 \mathrm{l}}{4}$ to $23 \frac{3 \mathrm{~h}}{4}$ Double-crested wave in H.F. ($+\cdot \mathrm{O} 12$).
 Decrease in Dec. (-3^{\prime}): in H.F. (-0010). 20^{h} to $21{ }^{3 \mathrm{~h}^{4}}$ Double-crested wave in H.F. $(+.0030)$, immediately followed till 22^{h} by a sharp wave (+0010). $20 \frac{1}{2}^{\mathrm{h}}$ to $20 \frac{33^{\mathrm{h}}}{}$ Decrease in V.F. (-0003). $20 \frac{3{ }^{\mathrm{h}}}{}$ to $21_{\frac{1}{2}^{\mathrm{h}}}$ Sharp wave in Dec. $\left(-13^{\prime}\right)$.

1910.

August $\quad 18^{d} 0^{h}$ to 1^{h} Wave in Dec. $\left(+3^{\prime}\right)$. 3^{h} to $4^{1 \mathrm{~h}}$ Wave in Dec. $\left(-4^{\prime}\right)$. 18^{h} to $18 \frac{3 \mathrm{~h}}{4}$ Wave in H.F. (+ - 0010), followed till $19 \frac{3 \mathrm{~h}}{4}$ by a double-crested wave $(+.0011)$. 193^{h} to $20 \frac{3 \mathrm{~h}}{4}$ Wave in Dec. (-7^{\prime}).
 $19^{d} \circ \frac{1^{h}}{}{ }^{\mathrm{h}}$ Double wave in H.F. (-.0012 to $+\cdot 0028$). $18^{\mathrm{d}} 23^{\mathrm{h}}$ to $19^{\mathrm{d}} \circ \frac{3 \mathrm{~h}}{4}$ Wave in Dec. $\left(-5^{\prime}\right)$.
$19^{\mathrm{d}} \mathrm{I}^{\frac{1 \mathrm{~h}}{\mathrm{~h}}}$ to 2^{h} Irregular wave in H.F. (- -OOI2). $1^{\frac{1}{2}}{ }^{\mathrm{h}}$ to 2^{h} Increase in Dec. $\left(+5^{\prime}\right)$. $4^{\frac{1}{4}}{ }^{\mathrm{h}}$ to 5^{h} Wave in Dec. $\left(-3^{\prime}\right) .5^{\mathrm{h}}$ to $6 \frac{1 \mathrm{~h}}{4}$ Flat-crested wave in H.F. (- -OOI4). $6 \frac{3 \mathrm{~h}}{4}$ to $7^{\frac{1}{4} \mathrm{~h}}$ Wave in Dec. $\left(-3^{\prime}\right)$. 7^{h} to $8 \frac{1}{2}{ }^{\mathrm{h}}$
 H.F. (+0010). $15^{\frac{1}{2}}$ h to 16^{h} Wave in H.F. (-0010). $16 \frac{1}{4}^{\mathrm{h}}$ to 17^{h} Wave in H.F. (+0010). ${ }^{18 \frac{1}{2}}{ }^{\mathrm{h}}$ to $19 \frac{1}{2}^{\mathrm{h}}$ Double wave in H.F. $\left(-0008\right.$ to +0008). $18 \frac{34^{h}}{}$ to 20^{h} Double-crested wave in Dec. $\left(-5^{\prime}\right) . \quad 22 \frac{1}{2}^{\mathrm{h}}$ to $23 \frac{1}{2}^{\mathrm{h}}$ Wave in Dec. $\left(-4^{\prime}\right)$.
$20^{d} 0^{h}$ to 1^{h} Wave in Dec. $\left(+3^{\prime}\right)$. 0^{h} to $1_{2}^{1 h}$ Wave in H.F. $\left(+{ }^{\circ} \mathrm{OOI} 2\right)$. 3^{h} to $4^{\frac{1}{2}}{ }^{\mathrm{h}}$ Wave in Dec. ($+5^{\prime}$). 3^{h} to 4^{h} Wave in H.F. (- -0012). $4^{3^{\mathrm{h}}}$ to 6^{h} Wave in H.F. (-0010). 19^{h} to 21^{h} Wave in Dec. (-7^{\prime}), steep at commencement. 19^{h} to 20^{h} Wave in H.F. ($+\cdot 0011$).
$2 \mathrm{I}^{\mathrm{d}} 4 \frac{1}{2}^{\mathrm{h}}$ to 7^{h} Wave in H.F. $(+\cdot 0020)$. 13^{h} to $14 \frac{1}{2}^{\mathrm{h}}$ Double-crested wave in H.F. (-0014). $16 \frac{1}{2}^{\mathrm{h}}$ to 17^{h} Decrease in Dec. $\left(-10^{\prime}\right)$, followed till 19^{h} by an irregular double-crested wave $\left(+7^{\prime}\right)$. $16 \frac{33^{\mathrm{h}}}{}$ to 18^{h} Double wave in H.F. (-001 I to $+\cdot 0030$), the intermediate portion very steep. $19 \frac{1}{2}^{\mathrm{h}}$ to $2 \mathrm{I}_{2}^{1^{4}}$ Two successive waves in H.F. (- 0013 and - 0011), followed till $22 \frac{3 \mathrm{~h}}{4}$ by a flat-crested wave (-.0010). $21 \frac{1}{2}$ h to 24^{h} Irregular triple wave in Dec. $\left(-3^{\prime},+4^{\prime},-3^{\prime}\right) . \quad 23^{\frac{1}{4}}{ }^{\mathrm{h}}$ to 24^{h} Wave in H.F. ($+\cdot 0020$).
$22^{d} 0^{h}$ to $23^{d} 0^{h}$ See Plate II.
 Irregular double-crested wave in Dec. $\left(+4^{\prime}\right), \quad 23^{\text {h }}$ to 24^{h} Irregular double-crested wave in H.F. $\left(+{ }^{\circ} \mathrm{OO} \mathrm{I}_{3}\right)$. $23^{\mathrm{d}} 23 \frac{1}{4}^{\mathrm{h}}$ to $24^{\mathrm{d}} 2^{\mathrm{h}}$ Wave in Dec. $\left(-4^{\prime}\right)$.
 in Dec. $\left(-5^{\prime}\right)$. 20^{h} to $21^{\frac{1}{2}}{ }^{h}$ Very sharp wave in H.F. (+0070). 200^{14} to $20 \frac{1}{2}^{h}$ Sharp wave in Dec. $\left(-8^{\prime}\right)$, followed till $2 \mathrm{I}_{2}^{\mathrm{h}}$ by a double-crested wave $\left(+3^{\prime}\right)$. $20_{4}^{\frac{1 \mathrm{~h}}{2}}$ to 21^{h} Decrease in V.F. ($-\cdot 0004$).
$25^{\mathrm{a}} 15^{\mathrm{h}}$ to $15^{\frac{3}{4}} \mathrm{~h}$ Wave in H.F. (-•0014).
$27^{\mathrm{d}} 17 \frac{3}{4}^{\mathrm{h}}$ to $18 \frac{34^{\mathrm{h}}}{}$ Wave in H.F. ($-\circ 0 \mathrm{O} 2$). 18^{h} to $19 \frac{1}{2}^{\mathrm{h}}$ Wave in Dec. $\left(-6^{\prime}\right)$.
 in H.F. $\left(+{ }^{\circ} 0030\right)$. $144^{\frac{1}{h}}$ to 15^{h} Wave in H.F. $\left(-{ }^{\circ} 0012\right)$. 15^{h} to 16^{h} Wave in Dec. $\left(+4^{\prime}\right)$, followed till 17^{h} by a double-crested wave $\left(-4^{\prime}\right)$. $15 \frac{1}{2}^{\mathrm{h}}$ to $16 \frac{1 \mathrm{~h}}{4}$ Wave in H.F. (-0018). $16 \frac{3}{4}{ }^{\mathrm{h}}$ to $17 \frac{1}{4} \mathrm{~h}$ Wave

$29^{\mathrm{d}} 0^{\frac{1}{4}}$ to $3{ }^{\frac{1 \mathrm{~h}}{4}}$ Irregular triple wave in Dec. ($-13^{\prime},+4^{\prime},-5^{\prime}$). 1^{h} to $2^{\frac{1 \mathrm{~h}}{4}}$ Wave in H.F. (-0014). $2 \frac{1}{2}^{\mathrm{h}}$ to $4 \frac{1}{2} \mathrm{~h}$ Irregular wave in H.F. (- -OOI). $44^{3 \mathrm{~h}}$ to $6 \frac{3 \mathrm{~h}}{} \mathrm{~h}^{5}$ Two successive waves in H.F. (- -0010 and - 0020), the second double-crested. $5^{\frac{1}{4}}$ to $6 \frac{1}{4}_{1 \mathrm{~h}}$ Irregular wave in Dec. $\left(+4^{\prime}\right)$. 9^{h} to II^{h} Slow wave in H.F. (-.0012). $17^{\frac{1}{4}}$ to $17 \frac{1}{2}^{\mathrm{h}}$ Decrease in Dec. (-5^{\prime}). $17 \frac{1}{4}^{\frac{1 \mathrm{~h}}{}}$ to $17 \frac{1}{2}^{\mathrm{h}}$ Increase in H.F. ($+\cdot 0010$). 18^{h} to 19^{h} Wave in Dec. $\left(-5^{\prime}\right)$. 18^{h} to $18 \frac{3 \mathrm{~h}}{4}$ Wave in H.F. (-0018), $29^{d} 23^{\frac{1}{4} h}$ to $30^{d} 0 \frac{1 \mathrm{~h}}{4}$ Wave in Dec. $\left(+3^{\prime}\right)$.
$30^{d} 5^{h}$ to $6 \frac{1}{2}^{h}$ Wave in Dec. $\left(-4^{\prime}\right)$. 6^{h} to $6 \frac{1}{2}^{\text {h }}$ Decrease in H.F. (-0011). $8 \frac{1}{2}^{\mathrm{h}}$ to 11^{h} Wave in H.F.
 Wave in H.F. (-.0023). $15^{\frac{3}{4}}$ to $177^{\frac{13}{h}}$ Wave in Dec. $\left(-8^{\prime}\right) . \quad 16^{\mathrm{h}}$ to $17 \frac{1}{2} \mathrm{~h}$ Wave in V.F. ($+\cdot 0004$). $194^{3 h}$ to $20 \frac{3}{4}$ h Wave in Dec. (-8^{\prime}). 20^{h} to 22^{h} Two successive small waves in H.F. ($+\cdot 0020$ and
 $31^{\mathrm{d}} 17^{\mathrm{h}}$ to $17 \frac{1}{4}^{\mathrm{h}}$ Decrease in Dec. $\left(-3^{\prime}\right)$, followed till $18 \frac{1}{4}^{\mathrm{h}}$ by a wave $\left(+3^{\prime}\right)$.

September $\mathrm{I}^{\mathrm{d}} 20 \frac{1 \mathrm{~h}}{4}$ to 24^{h} Very irregular double wave in Dec. $\left(-4^{\prime}\right.$ to $\left.+7^{\prime}\right) . \quad 22 \frac{1}{2} \mathrm{~h}$ to $23 \frac{3 \mathrm{~h}}{4}$ Wave in H.F. $\left(+{ }^{\circ} 0032\right)$, followed till $2^{\mathrm{d}} 0 \frac{3 \mathrm{~h}}{4}$ by a wave ($+\cdot 0010$). $22^{\frac{3 \mathrm{~h}}{4}}$ to $233^{\frac{1}{4}}$ Decrease in V.F. ($-\cdot 0006$).
$2^{\mathrm{d}} 3 \frac{1}{2}^{\mathrm{h}}$ to $5 \frac{1}{4} \mathrm{~h}$ Wave in Dec. $\left(+4^{\mathrm{h}}\right.$). $3 \frac{1}{2}^{\mathrm{h}}$ to 5^{h} Wave in H.F. (--0012).
$5^{\mathrm{d}} \mathrm{I}^{\frac{1}{4} \mathrm{~h}}$ to $18 \frac{1}{2} \mathrm{~h}$ Wave in Dec. $\left(-5^{\prime}\right)$.
$6^{\mathrm{d}} 3 \frac{1}{2}^{\mathrm{h}}$ to 5^{h} Wave in Dec. $\left(+3^{\prime}\right)$. $11_{\frac{1}{2}^{\mathrm{h}}}$ to $14^{\frac{1}{2}} \mathrm{~L}$ Loss of Dec. and H.F. registers. $15^{\frac{1}{2}}$ to 16^{h} Wave in H.F. $(+\cdot 015)$. $16 \frac{1^{h}}{}$ to $18 \frac{1}{2}^{\mathrm{h}}$ Slow double-crested wave in H.F. ($-\cdots 015$). $16 \frac{3 \mathrm{~h}}{} \mathrm{~h}^{2}$ to $18 \frac{3 \mathrm{~h}}{4}$ Irregular wave in Dec. $\left(-5^{\prime}\right) . \quad 21 \frac{3 h^{h}}{4}$ to $23 \frac{3}{4}^{\mathrm{h}}$ Double-crested wave in Dec. $\left(-7^{\prime}\right) . \quad 22^{\mathrm{h}}$ to $23 \frac{1}{2}^{\mathrm{h}^{4}}$ Wave in H.F. (+ -0018).
$7^{d} \circ \frac{1_{2}^{h}}{2}$ to $2 \frac{1}{2}^{h}$ Wave in Dec. $\left(+11^{\prime}\right)$. $0 \frac{1}{2}^{h}$ to $1 \frac{1}{4}^{h}$ Wave in H.F. (-0016). 2^{h} to $4^{\frac{1}{2}}{ }^{\mathrm{h}}$ Wave in H.F.

$8^{\mathrm{d}} 0^{\mathrm{h}}$ to $00^{\frac{3}{4}}$ h Wave in Dec. $\left(-3^{\prime}\right)$. \mathbf{I}^{h} to 3^{h} Wave in Dec. $\left(+5^{\prime}\right)$.
$9^{d} 0^{\text {h }}$ to $0 \frac{1_{4}^{h}}{4}$ Increase in Dec. $\left(+3^{\prime}\right) . \quad 2 \frac{1}{4}^{h}$ to $2^{2}{ }^{\text {h }}$ Wave in Dec. $\left(-3^{\prime}\right)$.
1910.

September $10^{d} 144^{\frac{1}{h}}$ to 16^{h} Wave in H.F. $(+\cdot 0020)$. 19^{h} to $20^{\frac{1}{2} h}$ Wave in Dec. $\left(-4^{\prime}\right) . \quad 21 \frac{3}{4}^{h}$ to $22^{\frac{1}{2}}{ }^{h}$ Wave in H.F. $(+\cdot 0010) . \quad 22^{\mathrm{h}}$ to $22 \frac{3 \mathrm{~h}}{}{ }^{\mathrm{h}}$ Decrease in Dec. $\left(-4^{\prime}\right)$.
II ${ }^{d} 18 \frac{1^{h}}{4}$ to 20^{h} Wave in Dec. $\left(-7^{\prime}\right)$. $18 \frac{33^{h}}{4}$ to 19^{h} Increase in H.F. ($+\cdot 0012$).
$12^{\mathrm{d}} 1^{\frac{3 \mathrm{~h}}{}}$ to 3^{h} Wave in Dec. $\left(+3^{\prime}\right)$.
$13^{d} 18 \frac{3 \mathrm{~h}}{4}$ to 20^{h} Wave in Dec. $\left(-5^{\prime}\right) . \quad 13^{\mathrm{d}} 23 \frac{12^{h}}{}$ to $14^{\mathrm{d}} 2^{\mathrm{h}}$ Flat-crested wave in Dec. $\left(-4^{\prime}\right) . \quad 13^{\mathrm{d}} 23^{\frac{1}{2} \mathrm{~h}}$ to $14^{\mathrm{d}} 1^{\mathrm{h}}$ Wave in H.F. (+ - OOI2).
$14^{\mathrm{d}} \mathrm{I} 5^{\frac{3 \mathrm{~h}}{4}}$ to $17^{\frac{1}{4}} \mathrm{~h}$ Wave in Dec. $\left(-4^{\prime}\right)$. \quad I $9 \frac{3}{4}^{\mathrm{h}}$ to $2 \frac{1}{4}^{\frac{1 \mathrm{~h}}{}}$ Double-crested wave in Dec. $\left(-4^{\prime}\right)$.
$15^{\mathrm{d}} 0^{\mathrm{h}}$ to 2^{h} Slow wave in H.F. $(+\cdot \mathrm{OOI} 2)$.
$16^{\mathrm{d}} \mathrm{IO}^{\mathrm{h}}$ to $1 \mathrm{I} \frac{1 \mathrm{~h}}{4}$ Flat-crested wave in H.F. (-0010), with sharp superposed fluctuations. 12^{h} to $12 \frac{1_{2}^{\mathrm{h}}}{}$ Waves
 Wave in Dec. $\left(-8^{\prime}\right)$.
 by a wave (+0020), $18 \frac{1}{2}^{\mathrm{h}}$ to $20 \frac{1}{2}^{\mathrm{h}}$ Double-crested wave in Dec. $\left(-7^{\prime}\right)$, followed till $23 \frac{1}{4}^{\mathrm{h}}$ by two successive waves $\left(-3^{\prime}\right.$ and $\left.-7^{\prime}\right)$. $\quad 2 I^{h}$ to $22 \frac{3}{4}{ }^{h}$ Irregular wave in H.F. (+0012). $\quad 2 I^{\frac{1}{4} h}$ to $2^{\text {h }}$ Decrease in V.F. (- .0003).
 $2 \frac{1}{2}$ to 3^{h} Sharp decrease in Dec. $\left(-12^{\prime}\right)$. 3^{h} to $4^{\frac{1}{2} \mathrm{~h}}$ Increase in V.F. $(+\cdot 0004)$. $3^{\frac{1}{2} h}$ to 4^{h} Increase

 $12 \frac{1 \mathrm{~h}}{}{ }^{\mathrm{h}}$ to $13 \frac{1}{4}^{\mathrm{h}}$ Wave in H.F. $\left(+\cdot 00 \mathrm{I} 3\right.$). 14^{h} to $\mathrm{I} 5^{\mathrm{h}}$ Wave in H.F. (+.0010). $15 \frac{1}{4}^{\mathrm{h}}$ to 16^{h} Wave in Dec. $\left(-5^{\prime}\right)$. $15 \frac{1}{2} \mathrm{~h}$ to $16 \frac{3 \mathrm{~h}}{}$ Wave in H.F. ($+{ }^{\circ} 0019$). $16 \frac{3 \mathrm{~h}}{}{ }^{\mathrm{h}}$ to 17^{h} Decrease in Dec. $\left(-4^{\prime}\right)$: increase in H.F. (+0010). $\quad 21^{\mathrm{h}}$ to $23 \frac{3 \mathrm{~h}}{}{ }^{\mathrm{h}}$ Wave in Dec. $\left(-5^{\prime}\right)$, with sharp wave $\left(-5^{\prime}\right)$ superposed on it from 22^{h} to $22^{\frac{1 \mathrm{~h}}{}} .22^{\mathrm{h}}$ to $23 \frac{1}{4}^{\mathrm{h}}$ Wave in H.F. $(+\cdot 0028)$, steep at commencement.
$23^{\mathrm{d}} 0^{\mathrm{h}}$ to 1^{h} Increase in H.F. $(+0012)$. $2^{\frac{1}{2} \mathrm{~h}}$ to 3^{h} Increase in Dec. $\left(+3^{\mathrm{h}}\right)$. 5^{h} to 7^{h} Wave in H.F. (- -0017). $5^{\frac{1}{4}}{ }^{\mathrm{h}}$ to $7 \frac{1}{2}^{\mathrm{h}}$ Irregular wave in Dec. $\left(+5^{\prime}\right)$. 83_{4}^{h} to $9 \frac{1}{2}^{\mathrm{h}}$ Decrease in H.F. (- -0017).
 223 ${ }^{3}$ Wave in Dec. $\left(-6^{\prime}\right)$.
$25^{\mathrm{d}} 0 \frac{1}{2}^{\mathrm{h}}$ to 2^{h} Wave in Dec. $\left(+15^{\prime}\right)$. $0 \frac{1}{2}^{\mathrm{h}}$ to $1^{\frac{1}{4}}$ Sharp wave in H.F. $(+.0025)$. $0 \frac{3 \mathrm{~h}}{}{ }^{\mathrm{h}}$ to 1^{h} Sharp decrease in V.F. (-0007). $2 \frac{3 h^{h}}{}$ to 4^{h} Increase in Dec. $\left(+10^{\prime}\right)$, followed till $5 \frac{1}{2}^{\mathrm{h}}$ by a wave (-5^{\prime}). $2 \frac{3 \mathrm{~h}}{4}$ to $6 \frac{1}{2} \mathrm{~h}$ Two successive waves in H.F. $(-.0017$ and -0014$)$. $10 \frac{1 \mathrm{~h}}{4}$ to $1 I^{\frac{1 \mathrm{~h}}{}{ }^{2}}$ Waves in Dec. $\left(+4^{\prime}\right)$ and H.F. (-0016). $14^{\frac{3}{4} \mathrm{~h}}$ to $16 \frac{1 \mathrm{~h}}{}$ Sharp double wave in H.F. (-.002 I to +0020). 15^{h} to $15 \frac{1 \mathrm{~h}}{} \mathrm{~h}$. Sharp decrease in Dec. $\left(-16^{\prime}\right)$, followed till 16^{h} by slower increase $\left(+11^{\prime}\right)$. 15^{h} to $16 \frac{1}{2}^{\mathrm{h}}$ Wave in V.F. $(+\cdots 004)$. 18^{h} to $199^{\frac{3 \mathrm{~h}}{}}$ Wave in Dec. $\left(-14^{\prime}\right)$, steep at commencement, with small waves superposed on second portion. $18 \frac{1}{4} \mathrm{~h}$ to $19 \frac{1}{2} \mathrm{~h}$ Irregular wave in H.F. ($+\cdot 0040$).
$26^{\mathrm{d}} 0^{\mathrm{h}}$ to $\mathbf{1}^{\mathrm{h}}$ Waves in Dec. $\left(+5^{\circ}\right)$ and H.F. $(+\cdot 0013)$: decrease in V.F. $(-\cdot 0003)$. $\mathbf{1}^{\mathrm{h}}$ to $2^{\frac{1}{2} \mathrm{~h}}$ Waves in Dec. $\left(+4^{\prime}\right)$ and H.F. $(+0010) . \quad 2 \frac{1^{h}}{}$ to $2 \frac{34^{h}}{4}$ Increase in Dec. $\left(+3^{\prime}\right) . \quad 9^{\frac{1}{2}}$ to $I^{\frac{1}{2}}{ }^{h}$ Wave in H.F. (- 0012),
 Dec. $\left(-5^{\prime}\right) . \quad 18^{\mathrm{h}}$ to $19 \frac{1}{4}^{\mathrm{h}}$ Irregular wave in Dec. $\left(-3^{\prime}\right) . \quad 18 \frac{1}{2}^{\mathrm{h}}$ to 20^{h} Wave in H.F. (- OOI2).
 $\left(-.0020\right.$ to +.0014). 15^{h} to $164^{1 \mathrm{~h}}$ Wave in Dec. $\left(-4^{\prime}\right)$. 17^{h} to 18^{h} Wave in H.F. ($+{ }^{\circ}$ ool2), steep at end. $22 \frac{3 \mathrm{~h}}{}{ }^{\mathrm{h}}$ to $234^{1 \mathrm{~h}}$ Wave in H.F. ($+\infty 010$). $27^{\mathrm{d}}{ }^{2} 3_{4}^{1 \mathrm{~h}}$ to $28^{\mathrm{d}} 0_{4}^{1 \mathrm{~h}}$ Irregular double-crested in Dec. (-4^{\prime}).
 8^{h} to $9 \frac{1}{2}^{\mathrm{h}}$ Wave in Dec. $\left(-3^{\prime}\right)$. $14^{\frac{1 \mathrm{~h}}{}}$ to 15^{h} Decrease in Dec. $\left(-4^{\prime}\right)^{\text {2 }}$: wave in H.F. (- Oor 1). $18 \frac{1}{2}^{\mathrm{h}}$ to $19 \frac{1}{2}^{\frac{h}{2}}$ Sharp-crested wave in Dec. $\left(-6^{\prime}\right)$.
$29^{d} 0^{\text {h }}$ to $30^{d} 0^{\text {h }}$ See Plate III.
$30^{\mathrm{d}} 5^{\mathrm{h}}$ to $5 \frac{1}{4}^{\mathrm{h}}$ Sharp increase in H.F. $(+.0014)$, followed till $6 \frac{1}{2}^{\mathrm{h}}$ by irregular slower decrease ($-\cdot 0023$).
 Increase in H.F. $(+.0018)$. 13^{h} Sharp decrease in Dec. $\left(-8^{\prime}\right)$: in H.F. (-0025), followed till $13 \frac{1}{2}{ }^{\mathrm{h}}$ by rather less sharp increase $(+\cdot 0037)$: similar small movement in V.F.
 double-crested wave in Dec. $\left(-9^{\prime}\right)$. $19^{h^{4}}$ to $20 \frac{1}{4}^{\mathrm{h}}$ D Double-crested wave in H.F. (+.0014). $20 \frac{3 \mathrm{~h}}{}{ }^{\mathrm{h}}$ to $\mathbf{2 1}^{\mathrm{h}}$

1910.

October $\quad 2^{\text {d }} 0^{\text {h }}$ to 3^{h} Slow wave in V.F. (-0006). $1^{\mathrm{J}} \frac{1}{2}^{\mathrm{h}}$ to 3^{h} Irregular wave in Dec. $\left(-6^{\prime}\right)$. $2^{\frac{3 \mathrm{~h}}{4}}$ to $4^{\frac{1}{4}}{ }^{\mathrm{h}}$ Irregular wave in H.F. (+0011). 7^{h} to $7^{12^{h}}$ Decrease in H.F. (-0015). $14^{\frac{31}{4}}$ to $1^{16^{h}}$ Wave in H.F. (- -0012). $17 \frac{1}{2}^{\mathrm{h}}$ to $19 \frac{1}{2}^{\mathrm{h}}$ Truncated wave in Dec. $\left(-4^{\prime}\right)$: in H.F. small. $2 \mathrm{I}_{\frac{1}{2} \mathrm{~h}}$ to $23 \frac{1 \mathrm{~h}}{2}$ Irregular double-crested wave in Dec. $\left(-7^{\prime}\right)$, the first portion steep. $2 \frac{1}{2}^{1 i}$ to $22 \frac{3}{4}{ }^{12}$ Wave in H.F. (+ '00II).
$3^{\mathrm{d}} 0^{\mathrm{h}}$ to $2 \frac{1}{4}^{\mathrm{h}}$ Wave in Dec. $\left(+5^{\prime}\right)$. $14^{\frac{1}{\mathrm{~h}}}$ to $15 \frac{3 \mathrm{~h}}{4}$ Sharp double-crested wave in H.F. $(-\cdot 0023)$. 15^{h} to $1^{6 \frac{1}{4}^{\mathrm{h}}}$ Double-crested waves in Dec. $\left(-1 I^{\prime}\right)$ and V.F. $\left(+{ }^{\circ} 0004\right)$. 16^{h} to 17^{h} Wave in H.F. (- 0017). 17^{h} to 18^{h} Wave in Dec. $\left(+3^{\prime}\right)$, followed till 19^{h} by a small double wave. $17^{\frac{1}{2}} \mathrm{~h}$ to 19^{h} Double-crested
 $22 \frac{12^{h}}{}$ to 24^{h} Wave in H.F. $(+\cdot 0024) .22 \frac{3 \mathrm{~h}}{4}$ to 234^{hh} Decrease in V.F. ($-\cdot 0003$). 2^{h} Sharp decrease in Dee. $\left(-4^{\prime}\right)$.
 (-.0003). $\quad 2 \frac{1}{2}^{\mathrm{h}}$ to 4^{h} Double-crested wave in Dec. $\left(+7^{\prime}\right)$. $2 \frac{3}{4}^{\mathrm{h}}$ to 4^{h} Decrease in V.F. (--0005). $3 \frac{1}{4}^{\frac{\mathrm{h}}{2}}$ to $4^{\frac{1 \mathrm{~h}}{4}}$ Wave in H.F. $(+\cdot 0014)$. 4^{h} to 5^{h} Wave in Dec. $\left(+3^{\prime}\right)$. $5^{\frac{1 \mathrm{~h}}{4}}$ to $8^{\frac{1 \mathrm{~h}}{4}}$ Irregular triple-
 Irregular flat-crested wave in H.F. ($-\cdot 013$), followed till $17_{4}^{\frac{1}{h}}$ by fluctuations in Dec. and H.F. $15^{\text {h }}$ to 21^{h} Wave in V.F. (+0015). $17 \frac{1 \mathrm{~h}}{4}$ to $17 \frac{3}{4}^{\mathrm{h}}$ Sharp decrease in Dec. (-24^{\prime}), followed till $18 \frac{1}{4}$ by a sharp increase $\left(+15^{\prime}\right)$. $17 \frac{1}{4}^{\mathrm{h}}$ to $18 \frac{1 \mathrm{~h}}{2}$ Sharp double wave in H.F. (-0023 to +0018). $18 \frac{1}{2}^{4^{4}}$ to 21^{h} Irregular triple wave in Dec. $\left(+3^{\prime},-5^{\prime},+4^{\prime}\right)$, the second and third portions double-crested. $19^{\text {h }}$ to $20 \frac{1_{2}^{h}}{}$ Irregular wave in H.F. $(+\cdot 0035)$. $21 \frac{1}{4}{ }^{\mathrm{h}}$ to $21 \frac{3 \mathrm{~h}}{4}$ Wave in Dec. $\left(+3^{\prime}\right)$, followed till $22 \frac{1}{2}{ }^{\mathrm{h}}$ by a sharp double wave $\left(+3^{\prime}\right.$ to $\left.-6^{\prime}\right) .2 \frac{3}{4}^{h}$ to $23 \frac{1}{4}$ h Sharp wave in H.F. $(+\cdot 0035) . \quad 22^{h}$ Sharp decrease in V.F. (- -0004).
$5^{\mathrm{d}} \mathrm{I} 8 \frac{1 \mathrm{~h}}{4}$ to $18 \frac{1 \mathrm{hh}}{2}$ Sharp increase in H.F. $(+\cdot 0014)$: in Dec. small. $20 \frac{3}{4}$ to $22 \frac{1}{2} \mathrm{~h}$ Wave in Dec. $\left(-6^{\prime}\right) . \quad 2 \frac{1}{4}^{\frac{1}{4}}$ to $22 \frac{1 h^{h}}{2}$ Wave in H.F. (+ -0017).
$6^{\mathrm{d}} 0^{\mathrm{h}}$ to 2^{h} Irregular wave in H.F. $(+\cdot 0030) . \quad 0 \frac{1}{2}^{\mathrm{h}}$ to 2^{h} Double wave in Dec. $\left(+4^{\prime}\right.$ to $\left.-4^{\prime}\right)$, the first portion double-crested, followed till 4^{h} by a wave $\left(+4^{\prime}\right)$. $0 \frac{3 \mathrm{~h}}{4}$ to $2_{2 \frac{1 \mathrm{~h}}{2}}$ Wave in V.F. (-0005). $6 \frac{3 \mathrm{~h}}{4}$ to $8 \frac{3 \mathrm{~h}}{4}$
 to $13 \frac{1 \mathrm{~h}}{4}$ Irregular wave in H.F. $(+.0014)$. 14^{h} to $14^{\frac{1}{\mathrm{~h}}}{ }^{\mathrm{h}}$ Two successive sharp waves in H.F. (+0010 and +0014). $\quad 16 \frac{3}{4} \mathrm{~h}$ to $17 \frac{3 \mathrm{~h}}{4}$ Very irregular triple-crested wave in Dec. $\left(-7^{\prime}\right)$, followed by a very sharp decrease (-12^{\prime}). 163 ${ }^{\mathrm{h}}$ Sharp decrease in H.F. (-0018). $16 \frac{3 \mathrm{~h}}{}{ }^{\text {h }}$ to $19 \frac{3^{\mathrm{h}}}{}{ }^{\mathrm{h}}$ Irregular wave in V.F. ($+\cdot 0006$), immediately followed till $21 \frac{1}{4}^{\mathrm{h}}$ by a sharper wave (-.0012). 17^{h} to 18^{h} Sharp doublecrested wave in H.F. $(-\cdot 0026)$. 18^{h} to $19 \frac{1}{4}^{\frac{1 \mathrm{~h}}{}}$ Two successive waves in Dec. $\left(-4^{\prime}\right.$ and $\left.-6^{\prime}\right)$. $18 \frac{1_{2}^{\mathrm{h}}}{}$ to $19^{\text {h }}$ Wave in H.F. ($-{ }^{\circ} \mathrm{OO} 6$), followed till $21 \frac{11}{4}$ by an irregular triple wave (-0018 , $+\circ 010$, -.0045). $19 \frac{1}{2}^{\mathrm{h}}$ to $21 \frac{1_{4}^{\mathrm{h}}}{}$ Very irregular sharp wave in Dec. $\left(-17^{\prime}\right)$.
$7^{\mathrm{d}} 19 \frac{1}{4}^{\mathrm{h}}$ to $2 \mathrm{I} \frac{3}{4}^{\mathrm{h}}$ Irregular triple-crested wave in Dec. $\left(-6^{\prime}\right) .7^{\mathrm{d}} 23^{\frac{1}{\mathrm{~h}}}$ to $8^{\mathrm{d}} 2^{\mathrm{h}}$ Triple-crested wave in Dec. $\left(-7^{\prime}\right) . \quad 7^{\mathrm{d}} 23_{4}^{3 \mathrm{~h}}$ to $8^{\mathrm{d}} 1_{\frac{1}{2}} \mathrm{~h}$ Wave in H.F. $(+0016)$.
$8^{\mathrm{d}} 3^{\mathrm{h}}$ to 4^{h} Wave in Dec. $\left(-3^{\prime}\right)$. $20 \frac{1}{2}^{\mathrm{h}}$ to $2 \mathrm{I}^{\frac{1}{4}}{ }^{\mathrm{h}}$ Wave in Dec. $\left(-3^{\prime}\right)$. $2 \mathrm{I} \frac{1}{4}^{\mathrm{h}}$ to $22 \frac{1 \mathrm{~h}}{}{ }^{\mathrm{h}}$ Double-crested wave in H.F. (-0010). $22^{\text {h }}$ to $24^{\text {h }}$ Double wave in Dec. $\left(-3^{\prime}\right.$ to $\left.+4^{\prime}\right)$, the second portion flat-crested. $22 \frac{3}{4}^{\text {h }}$ to 24^{h} Wave in H.F. ($+\cdot 0013$).

 wave $\left(-8^{\prime}\right) . \quad 2 I^{\frac{1}{4}}$ to $21 \frac{3 \mathrm{~h}}{}{ }^{\text {h }}$ Decrease in H.F. ($-\cdot 013$), followed till $22 \frac{1}{2}^{\mathrm{h}}$ by a wave ($+\cdot 010$).

$12^{\mathrm{d}} 2 \frac{1}{2}^{\mathrm{h}}$ to $4 \frac{1}{2}^{\mathrm{h}}$ Wave in Dec. $\left(+7^{\prime}\right)$. $16 \frac{1}{2}^{\mathrm{h}}$ to $17 \frac{1}{4}^{\mathrm{h}}$ Wave in H.F. (-.0014), steep at commencement. $\quad 18^{\mathrm{h}}$ to $20 \frac{3 \mathrm{~h}}{4}$ Irregular sharp wave in Dec. (-15^{\prime}). $\quad 18^{\mathrm{h}}$ to $20{ }^{1 \mathrm{~h}} \mathrm{~h}$. Double wave in H.F. (-0016 to +.0024). 21^{h} to 22^{h} Sharp double wave in Dec. $\left(-6^{\prime}\right.$ to $\left.+5^{\prime}\right) .21^{\mathrm{h}}$ to 23^{h} Irregular double wave in H.F. ($+{ }^{\circ} 0020$ to - 0017) : irregular decrease in V.F. (- 0008), followed till $23 \frac{3 \mathrm{~h}}{4}$ by a wave (+.0003). $22 \frac{1 \mathrm{~h}}{}{ }^{\mathrm{h}}$ to $22 \frac{3}{4}^{\mathrm{h}}$ Sharp decrease in Dec. $\left(-17^{\prime}\right)$, followed till $233^{\frac{1}{4}}$ by a sharp increase $\left(+12^{\prime}\right)$. $23 \frac{1}{2}^{\mathrm{h}}$ to

$13^{\mathrm{d}} 0^{\mathrm{h}}$ to $\circ \frac{1_{2}^{h}}{}$ Sharp increase in Dec. $\left(+17^{\prime}\right)$, followed till $3 \frac{1 \mathrm{~h}^{\mathrm{h}}}{}$ by an irregular wave $\left(-17^{\prime}\right)$. $0 \frac{1}{4}^{\mathrm{h}}$ to $\mathbf{1}^{\mathrm{h}}$ Decrease in V.F. (--0008). $\quad 1^{1^{h}}$ to $3 \frac{1}{4}^{\text {h }}$ Irregular wave in H.F. $(+\cdot 0027)$. $4^{\frac{1}{2}}{ }^{\text {h }}$ Small sharp waves in Dec., H.F. and V.F., followed by small fluctuations till 7^{h}. 11^{h} to 12^{h} Wave in H.F. (-0020). $11 \frac{3 h^{h}}{4}$ to $12 \frac{1}{2}^{h}$ Wave in Dec. $\left(+3^{\prime}\right)$. $12 \frac{1 h^{h}}{4}$ to $13^{\frac{1 h}{h}}$ Wave in H.F. $\left(+{ }^{\circ} 0013\right)$. 13^{h} to $13 \frac{1}{4}^{1 \mathrm{~h}}$ Wave in Dec. $\left(+4^{\prime}\right)^{2}$: in V.F. small. $15 \frac{1 h^{h}}{4}$ to 17^{h} Very irregular wave in Dec. $\left(-13^{\prime}\right)$. $15 \frac{1 \mathrm{~h}}{4}$ to $16 \frac{1}{2}$ h Double wave in H.F. $(-0014$ to +.0021$)$. $15 \frac{1}{2} \mathrm{~h}$ to $17^{\frac{1}{4} \mathrm{~h}}$ Wave in V.F. $(+0003)$. 18^{h} to 20^{h} Wave in Dec.

 Decrease in H.F. (- 0020).
1910.
 H.F. (-0015). 16^{h} to $\mathrm{I}^{6 \frac{3 \mathrm{~h}}{4}}$ Wave in Dec. $\left(-3^{\prime}\right)$. 21^{h} to $23^{\frac{1}{2}}{ }^{\text {h }}$ Irregular flat-crested wave in Dec. $\left(-5^{\prime}\right) .21^{\mathrm{h}}$ to 22^{h} Wave in H.F. $\left(+\circ 0013\right.$), followed till 23^{h} by a sharp wave ($+\circ 0033$). 22^{h} to $23^{\frac{1}{2}}{ }^{\mathrm{h}}$ Wave in V.F. (- -0003).
$19^{\mathrm{d}} 9^{\mathrm{h}}$ to 13^{h} Irregular wave in H.F. (-0038). $10^{\frac{1}{2}}$. to $11 \frac{1}{2}^{\mathrm{h}}$ Increase in Dec. $\left(+11^{\prime}\right)$, followed till 12^{h} by a decrease $\left(-4^{\prime}\right)$. 12^{h} to 13^{h} Flat-crested wave in Dec. $\left(-4^{\prime}\right)$. 17^{h} to $\mathbf{1 7}^{\frac{1}{2}} \mathrm{~h}$ Sharp decrease in Dec. (-12^{\prime}), followed till $21^{\frac{1}{2}}{ }^{\mathrm{h}}$ by an irregular quadruple wave $\left(~+7^{\prime},-8^{\prime},+7^{\prime},-8^{\prime}\right.$), the first portion double-crested, the rest steep. $17^{\frac{1}{4}}$ to $I^{\frac{1}{4} \mathrm{~h}}$ Sharp wave in H.F. $(+\circ 030)$. ${ }^{20} \frac{1}{2}^{\mathrm{b}}$ to $\mathbf{2 2}^{\mathrm{h}}$. Sharp triple wave in H.F. (-.0030, $+\circ 0013,-0013$). $20 \frac{1^{h}}{}$ to 23^{h} Irregular wave in V.F. (-0006). $21 \frac{1}{2}^{\mathrm{h}}$ to 23^{h} Wave in Dec. $\left(-6^{\prime}\right)$, followed till $3^{\frac{1}{2}}{ }^{\text {h }}$ by an increase $\left(+4^{\prime}\right)$.

 16^{h} Wave in H.F. (-0022), steep at commencement. ${ }^{17 \frac{3 \mathrm{~h}}{} \mathrm{~h}}$ to 18^{h} Sharp decrease in Dec. (-9^{\prime}), and increase $\left(+5^{\prime}\right)$: wave in H.F. (-0012). 18^{h} to $18 \frac{1}{2}{ }^{\mathrm{h}}$ Decrease in H.F. (-0012). $18 \frac{3 \mathrm{sh}}{4}$ to $19 \frac{1}{2}^{\mathrm{h}}$ Double-crested wave in H.F. $\left(+{ }^{\circ} 0014\right)$. 1 $^{\mathrm{h}}$ to $19 \frac{1}{2}^{\mathrm{h}}$ Wave in Dec. $\left(-3^{\prime}\right)$. $\quad 21^{\frac{1}{4}}{ }^{\mathrm{h}}$ to 24^{h} Three successive waves in H.F. $\left(+\cdot 0012,+0013 \text {, and }+{ }^{\circ} 0014\right)^{2}{ }_{21} \frac{1}{2}^{\mathrm{h}}$ to 24^{h} Irregular quadruple-crested wave in Dec. ($+7^{\prime}$).
$21^{\mathrm{d}} \mathbf{1}^{\mathrm{h}}$ to $2 \frac{3 \mathrm{~h}}{4}$ Wave in Dec. $\left(-3^{\prime}\right)$. $14 \frac{1}{2}^{\mathrm{h}}$ to 6^{h} Double-crested wave in Dec. $\left(-6^{\prime}\right)$. $14 \frac{1}{2}^{\mathrm{h}}$ to 15^{h} Wave
 (-.0020). $17 \frac{1}{2}^{\mathrm{h}}$ to 19^{h} Sharp wave in Dec. $\left(-15^{\prime}\right)$. $17^{\frac{1}{2} \mathrm{~h}}$ to 18^{h} Wave in H.F. (-0014), immediately followed till $19 \frac{1}{4}^{\mathrm{h}}$ by a double wave (-0011 to +0017), the latter portion double-crested. $22^{\frac{1 \mathrm{~h}}{}}$ to $23 \frac{1}{2}^{\mathrm{h}}$ Wave in H.F. ($+\cdot 0014$).
$22^{\mathrm{d}} 1^{\mathrm{h}}$ to 3^{h} Irregular wave in Dec. $\left(+4^{\prime}\right)$. 15^{h} to $\mathrm{I}^{6 \frac{3}{4} \mathrm{~h}}$ Wave in Dec. $\left(-5^{\prime}\right) . \quad 15^{\mathrm{h}}$ to 16^{h} Wave in H.F. ($-\cdot 0012$). $20 \frac{1}{2}^{\text {h }}$ to $22^{\text {h }}$ Double-crested wave in Dec. $\left(+3^{\prime}\right)$.
$23^{\mathrm{d}} 0^{\mathrm{h}}$ to 2^{h} Irregular wave in Dec. $\left(+5^{\prime}\right)$. $\quad{ }_{11} 1^{\mathrm{h}}$ to 12^{h} Wave in H.F. (-0010): in Dec. small. $16 \frac{3}{4}$ to $18 \frac{3 \mathrm{~h}}{4}$ Two successive waves in H.F. $\left(+{ }^{\circ} 0010\right.$ and $+{ }^{\circ} 0013$), the second sharp: small wave in Dec. $19^{\frac{h}{h}}$ to $19 \frac{3}{4}{ }^{\frac{3}{2}}$ Two successive waves in Dec. ($+3^{\prime}$ and $+3^{\prime}$), the second sharp, followed till $20 \frac{3 \mathrm{~h}}{}{ }^{\mathrm{h}}$ by a double wave
 $192^{\frac{1}{h}}$ to $20 \frac{1}{2}^{\mathrm{h}}$ Irregular wave in V.F. $\left(-.0003\right.$). $20 \frac{1}{4}^{\mathrm{h}}$ to 22^{h} Irregular double wave in H.F. (-0011 to $+\cdots 0^{2} 0$). $22 \frac{11}{4}$ to 24^{h} Double-crested wave in Dec. $\left(-5^{\prime}\right)$.
 Dec. $\left(-5^{\prime}\right)$. $21^{\frac{1}{2}}$ to $22 \frac{2^{\text {ha }}}{4}$ Wave in H.F. $(+\cdot 011$).

 to +0030). $18 \frac{11^{\mathrm{h}}}{}$ to 20^{h} Two successive waves in Dec. $\left(-7^{\prime}\right.$ and $\left.-3^{\prime}\right)$. $18 \frac{3 \mathrm{~h}}{}{ }^{\mathrm{h}}$ to $1^{14^{\mathrm{h}}}$ Wave in H.F. ($+\cdot 0016$). $25^{d} 23 \frac{1}{2}^{\mathrm{h}}$ to $26^{d^{d}} 1^{\mathrm{h}}$ Wave in Dec. ($+11^{\prime}$), steep at commencement : triple wave in H.F. $(+\cdot 0010,-\cdot 0008,+\cdot 0008) . \quad 25^{\mathrm{d}} 23^{3 \mathrm{~h}}$ to $26^{\mathrm{d}} \frac{1}{2}^{\mathrm{h}}$ Wave in V.F. (-0004).
 Irregular triple wave in H.F. ($-0012,+0010,-0020$). 16^{h} to $\mathrm{I}^{8^{1 \mathrm{~h}}}$ Two successive waves in Dec.
 triple wave in Dec. $\left(-4^{\prime},+4^{\prime},-4^{\prime}\right) . \quad 26^{\mathrm{d}} 23^{3 \mathrm{~h}}$ to $27^{\mathrm{d}} 1^{\mathrm{h}}$ Wave in V.F. (-0004).
 ${ }^{2}$ Flat-crested wave in H.F. $(-\cdot 0025)$, with sharp superposed fluctuations. $11 \frac{1 \mathrm{l}}{4} \mathrm{~h}$ to $12 \frac{14^{\mathrm{h}}}{}$ Irregular wave in Dec. $\left(+6^{\prime}\right)$, followed till $14^{\text {h }}$ by an irregular double wave $\left(+5^{\prime}\right.$ to $\left.-3^{\prime}\right)$, the first portion flat-crested.

 Wave in H.F. $(+0028) . \quad 22^{\text {h }}$ to $23^{\frac{1 \mathrm{~h}}{4}}$ Wave in Dec. $\left(-7^{\prime}\right)$.
$28^{\mathrm{d}} 00_{4}^{3 \mathrm{~h}}$ to 5^{h} Very irregular triple wave in H.F. ($-0022,+0035,-0018$), with very sharp movements ($\pm \circ 010$), superposed on the central portion: irregular wave in V.F. (-0012). 1^{h} to 2^{h} Sharp irregular wave in Dec. ($+12^{\prime}$), continued till $2 \frac{1}{2}^{\text {h }}$ by two successive sharp waves (-3^{\prime} and -3^{\prime}), and followed till $3 \frac{3 \mathrm{~h}}{}{ }^{\mathrm{h}}$ by a flat-crested wave $\left(-5^{\prime}\right) . \quad 6 \frac{3 \mathrm{~h}}{4}$ to 8^{h} Irregular wave in H.F. (-0015).
 Two successive waves in Dec. $\left(+3^{\prime}\right.$ and $\left.+3^{\prime}\right) . \quad 22 \frac{33^{h}}{}$ to 24^{h} Wave in H.F. $(+\cdot 0018)$.
 (-7).

I910.
November $2^{\text {d }} 8^{h}$ to 10^{h} Decrease in H.F. (-0035). $\quad 10^{\frac{1}{2}}{ }^{\text {h }}$ Very sharp wave in Dec. $\left(+4^{\prime}\right)$. $10 \frac{3}{4}{ }^{h}$ to $11 \frac{t^{h}}{4}$ Waves in Dec. $\left(+3^{\prime}\right)$, and H.F. $(+\cdot 0011)$.
$4^{\mathrm{d}} 21 \frac{3 \mathrm{~h}}{}{ }^{\mathrm{h}}$ to $22 \frac{33^{h}}{4}$ Wave in Dec. $\left(-6^{\prime}\right)$. $21 \frac{3}{4}^{\mathrm{h}}$ to $22 \frac{1}{2} \mathrm{~h}$ Wave in H.F. $(+\cdot 0010)$.
$5^{\mathrm{d}} \frac{13}{4}^{\frac{\mathrm{b}}{2}}$ to $2 \frac{1}{2}^{\mathrm{h}}$ Wave in Dec. $\left(-3^{\prime}\right)$.
$7^{\text {d }} 18 \frac{1}{2}^{\mathrm{h}}$ to $19 \frac{1}{2}^{\mathrm{h}}$ Double-crested wave in Dec. $\left(-5^{\prime}\right)$: small double wave in H.F.
$8^{\mathrm{d}} 15^{\mathrm{h}}$ to 17^{h} Wave in Dec. $\left(-12^{\prime}\right)$. 15^{h} to $16 \frac{1}{4}^{\mathrm{h}}$ Truncated wave in H.F. (-0019). $177^{3 \mathrm{~h}}$ to $19 \frac{1}{4}^{\mathrm{h}}$ Irregular wave in Dec. (-9^{\prime}), steep at commencement. $173^{3 h}$ to $183^{3 h}$ Sharp double wave in H.F.
 in H.F. ($+\cdot 0035$). $22 \frac{1}{4}^{\mathrm{h}}$ to $23 \frac{1}{2}^{\mathrm{h}}$ Irregular wave in Dec. $\left(-5^{\prime}\right) . \quad 23^{\mathrm{h}}$ to 24^{h} Wave in H.F. ($-\cdot 0011$).
 $18 \frac{1}{4}^{\mathrm{h}}$ to $20 \frac{1}{4}^{\mathrm{h}}$ Irregular wave in Dec. (-7^{\prime}). $18 \frac{1}{4}^{\mathrm{h}}$ to 20^{h} Double wave in H.F. (-0010 to $+\cdot 0010$), followed till $22 \frac{1}{2} \mathrm{~h}$ by another double wave (-.0012 to +.0020), the second portion double-crested. $20 \frac{1}{4}^{\mathrm{h}}$ to $23^{\frac{1 \mathrm{~h}}{} \mathrm{~h}}$ Irregular triple-crested wave in Dec. $\left(-7^{\prime}\right)$, followed till $10^{\mathrm{d}} \circ \frac{1}{2}^{\mathrm{h}}$ by another wave $\left(-3^{\prime}\right)$.
$10^{\mathrm{d}} 17^{\mathrm{h}}$ to $18 \frac{1}{2} \mathrm{~h}$ Double-crested waves in Dec. $\left(-6^{\prime}\right)$, and H.F. $(+\infty 019)$. 20^{h} to $22 \frac{1}{4}^{\mathrm{h}}$ Double wave in H.F. (-0010 to $+\cdot 0012$), the second portion double-crested. $203^{\frac{3}{h}}$ to 21^{h} Sharp increase in Dec. ($+3^{\prime}$), followed till $22 \frac{1 \mathrm{~h}}{2}$ by a flat-crested wave $\left(-6^{\prime}\right)$, steep at commencement.
$11^{d} \circ^{\text {h }}$ to $3^{\text {h }}$ Slow wave in H.F. $(+\cdot 0015)$.
$15^{d} 17^{\frac{3 h}{4}}$ to 19^{h} Wave in Dec. $\left(-3^{\prime}\right)$.
$16^{\mathrm{d}} 4 \frac{1}{4}^{\mathrm{h}}$ to 7^{h} Flat-crested wave in Dec. $\left(+4^{\prime}\right)$. $6 \frac{1 \mathrm{~h}}{}{ }^{\mathrm{h}}$ to $7 \frac{1}{4}^{\mathrm{h}}$ Wave in H.F. $(+\cdot 0013) . \quad 21_{2}^{\mathrm{h}}$ to 2^{h} Decrease in Dec. $\left(-4^{\prime}\right)$. $16^{\mathrm{d}} 23^{\mathrm{h}}$ to $17^{\mathrm{d}} 1^{\mathrm{h}}$ Irregular wave in Dec. $\left(-8^{\prime}\right)$, steep at commencement. $16^{d} 23^{\mathrm{h}}$ to $17^{\mathrm{d}} \circ \frac{1}{2} \mathrm{~h}$ Wave in H.F. $(+.0028$).
$17^{\mathrm{d}} 1^{\mathrm{h}}$ to 2^{h} Wave in Dec. $\left(-3^{\prime}\right)$. $\quad 2 \frac{1}{2}^{\mathrm{h}}$ to 4^{h} Wave in Dec. $\left(+7^{\prime}\right)$. 3^{h} to $4^{\frac{1}{2}}{ }^{\mathrm{h}}$ Wave in H.F. ($+\cdot 0017$). 3^{h} to 4^{h} Decrease in V.F. $(-\cdot 0004)$. $4^{\frac{1}{2}}{ }^{\mathrm{h}}$ to $5 \frac{1}{4}^{\mathrm{h}}$ Wave in Dec. $\left(+3^{\prime}\right)$. 12^{h} to $12 \frac{3 \mathrm{~h}}{4}$ Flat-crested wave
 Double-crested wave in Dec. $\left(-4^{\prime}\right)$. 15^{h} to $16 \frac{1}{2} \mathrm{~h}$ Irregular wave in H.F. (-0030), steep at end. 16^{h} to $17 \frac{1}{2} \mathrm{~h}$ Wave in Dec. $\left(-11^{\prime}\right)$. $19 \frac{1}{4}^{\mathrm{h}}$ to $20 \frac{3}{4} \mathrm{~h}^{2}$ Two successive waves in Dec $\left(-4^{\prime}\right.$ and - $\left.5^{\prime}\right)$, the second sharp, followed till $22^{\frac{1}{4}}$ by an irregular flat-crested wave (-5^{\prime}). $19 \frac{1}{2}^{\mathrm{h}}$ to $20 \frac{1}{4}^{\mathrm{h}}$ Wave in H.F. (+.0015), followed till $22 \frac{1}{2} \mathrm{~h}$ by an irregular double wave $(+.0030$ to -.0012), steep at commencement, , the first portion double-crested. $20 \frac{1}{2}^{\mathrm{h}}$ to $\mathbf{2 2}^{\mathrm{h}}$ Irregular wave in V.F. ($-\cdot 0003$).

 Dec. $\left(+4^{\prime}\right) . \quad 14^{\mathrm{h}}$ to 15^{h} Sharp wave in H.F. $(-\cdot 0035)$. $144^{\frac{\mathrm{h}}{}}$ to $18 \frac{1}{4} \mathrm{~h}$ Three successive sharp irregular waves in Dec. $\left(-17^{\prime},-14^{\prime}\right.$ and $\left.-8^{\prime}\right)$, the last flat-crested, superposed on a general decrease (-12^{\prime}). $14 \frac{1}{2}^{\mathrm{h}}$ to $16 \frac{3 \mathrm{~h}}{4}$ Wave in V.F. $(+\cdot 0004)$. $15^{\frac{1}{4}}{ }^{\mathrm{h}}$ to $17 \frac{1}{2}^{\mathrm{h}}$ Irregular triple wave in H.F. $\left(-{ }^{\circ} 0030,+{ }^{\circ} 0022\right.$, - 0013), the intermediate portion steep. 18^{h} to 20^{h} Slow wave in H.F. (-0014). $20 \mathrm{l}^{\mathrm{h}}$ to $21 \mathrm{~m}^{3 \mathrm{~h}}$ Sharp wave in Dec. $\left(-12^{\prime}\right)$. 203^{h} to 22^{h} Sharp wave in H.F. $\left(+{ }^{\circ} 0034\right)$. $20^{3 \mathrm{~h}}$ to 24^{h} Wave in V.F. ($-\cdot 0004$).
$19^{\text {d }} 16 \frac{1}{4}$ h to 17^{h} Double-crested wave in Dec. $\left(-3^{\prime}\right)$, followed till $18 \frac{1 \mathrm{~h}}{4}$ by an irregular sharp double-crested wave (-16'). $16 \frac{1}{2}^{\mathrm{h}}$ to 19^{h} Irregular double wave in V.F. (+.0003 to $-\cdot 0003$). $16 \frac{33^{h}}{4}$ to 19^{h} Irregular triple wave in H.F. ($-\cdot 012,+0047,-0010$), the second and third portions double-crested.
$20^{\mathrm{d}} 17 \frac{1}{4}^{\mathrm{h}}$ to $177^{\frac{3}{4}}$ Double-crested wave in Dec. $\left(-3^{\prime}\right)$. $18 \frac{1}{4}^{\mathrm{h}}$ to 19^{h} Sharp wave in Dec. $\left(-8^{\prime}\right)$, followed till $19 \frac{1}{4}^{\mathrm{h}}$ by a decrease $\left(-4^{\prime}\right)$. $18 \frac{1}{4}^{\mathrm{h}}$ to $18 \frac{3 \mathrm{~h}}{4}$ Wave in H.F. (-0013). $20^{\mathrm{d}}{ }^{2} 3 \frac{1}{2}^{\mathrm{h}}$ to $21^{\mathrm{d}}{ }_{2} \frac{3 \mathrm{~h}}{4}$ Irregular double wave in Dec. $\left(-4^{\prime}\right.$ to $+7^{\prime}$), the second portion double crested : small waves in H.F. $20^{\text {d }} 23 \frac{1}{2}{ }^{\text {b }}$ to $21^{d} 4^{h}$ Double-crested wave in V.F. ($-\cdot 0004$).
$21^{d} 6^{h}$ to 17^{h} Wave in Dec. $\left(-3^{\prime}\right) . \quad 21^{h}$ to $22 \frac{1}{4} \mathrm{~h}$ Wave in H.F. (+ 0015).
$22^{\mathrm{d}} 17 \frac{1}{4}^{\mathrm{h}}$ to $19 \frac{1}{4}^{\mathrm{h}}$ Irregular wave in Dec. (-6^{\prime}) : two small waves in H.F. $2 \frac{1}{2}^{\frac{\mathrm{h}}{}}$ to $22 \frac{1}{2}^{\mathrm{h}}$ Wave in Dec. (-3^{\prime}).
$23^{\mathrm{d}} 20 \frac{1}{2}^{\mathrm{h}}$ to 21^{h} Wave in Dec. $\left(-4^{\prime}\right)$.
$25^{\mathrm{d}} 18 \frac{1}{2}^{\mathrm{h}}$ to $21^{\frac{1}{4}}{ }^{\mathrm{h}}$ Irregular triple-crested wave in Dec. $\left(-7^{\prime}\right)$, followed till 23^{h} by a wave $\left(-6^{\prime}\right)$: small waves in H.F.
$26^{\mathrm{d}} 0^{\mathrm{h}}$ to $\mathrm{I}_{2}^{\mathrm{l}} \mathrm{h}$ Wave in Dec. $\left(-6^{\prime}\right)$. 22^{h} to 23^{h} Wave in H.F. (+ . 0010).
$27^{\text {d }} 183^{3}$ to 20^{h} Irregular triple-crested wave in Dec. (-4^{\prime}): irregular double-crested wave in H.F. ($+{ }^{\circ} 0016$). 21^{h} to $22 \frac{1}{2}{ }^{\mathrm{h}}$ Wave in Dec. $\left(-3^{\prime}\right)$.
1910.
 14^{h} to 15^{h} Irregular decrease in H.F. ($-{ }^{\circ} 0020$). $16 \frac{3 \mathrm{~h}}{4}$ to $18 \frac{1}{4}^{\mathrm{h}}$ Sharp wave in Dec. $\left(-9^{\prime}\right)$. $16 \frac{3 \mathrm{~h}}{4}$ to ${ }^{17} 7^{\frac{1}{2}}$ Truncated wave in H.F. $\left(-{ }^{-} 0013\right)$. $20 \frac{1}{4} \mathrm{~b}$ to 21^{h} Irregular decrease in Dec. (-5^{\prime}) and H.F. (-.0017).
$29^{\text {d }} 11 \frac{1}{2}{ }^{\mathrm{h}}$ to 13^{h} Wave in Dec. $\left(+5^{\prime}\right)$. $14^{\frac{3}{4} \mathrm{~h}}$ to 15^{h} Decrease in H.F. (-0012). $17 \frac{3 \mathrm{~h}}{4}$ to $18 \frac{1 \mathrm{~h}}{4}$ Wave in Dec. (-3^{\prime}), followed till $18 \frac{1}{2} \mathrm{~h}$ by a sharp decrease $\left(-7^{\prime}\right)$. 18^{h} to $18 \frac{1}{2}^{\mathrm{h}}$ Wave in H.F. ($-{ }^{\circ} 0014$). $20 \frac{1}{2}^{\mathrm{h}}$ to $21 \frac{3 \mathrm{~h}}{}{ }^{3}$ Irregular wave in H.F. $(+0023)$. $20 \frac{1 \mathrm{~h}}{}{ }^{\mathrm{h}}$ to 22^{h} Decrease in V.F. (-0004), $2 \mathrm{I}^{\mathrm{h}}$ to 23^{h} Sextuplecrested wave in Dec. $\left(-7^{\prime}\right)$, followed till $30^{d} 1^{\text {h }}$ by an irregular triple wave ($-3^{\prime},+3^{\prime},-3^{\prime}$). $\quad 22^{\text {h }}$ to $23 \frac{1 \mathrm{~h}}{}$ Irregular wave in H.F. (-0017), $29^{\mathrm{d}} 23^{\mathrm{h}}$ to $30^{\mathrm{d}} 1^{\mathrm{h}}$ Irregular wave in V.F. (-0004). 29 $9^{\mathrm{d}} 3^{\frac{1}{2}}{ }^{\mathrm{h}}$ to $30^{d} 0 \frac{3 \mathrm{~h}}{4}$ Double-crested wave in H.F $\left(+{ }^{\circ} 0029\right)$.
$30^{d} 18 \frac{3 \mathrm{~h}}{4}$ to 20^{h} Irregular wave in Dec. $\left(-7^{\prime}\right)$. $18 \frac{3 \mathrm{~h}}{4}$ to $19 \frac{1}{4}^{\mathrm{h}}$ Wave in H.F. (-0010). $19^{3 \mathrm{~h}}$ to $20 \frac{3 \mathrm{~h}}{4}$ Wave in H.F. (- -OOIO). $22 \frac{1}{2}{ }^{\mathrm{h}}$ to $23 \frac{34^{\mathrm{h}}}{}$ Two successive waves in Dec. (-3^{\prime} and -4^{\prime}): small double wave in H.F.

December $1^{\text {d }} 0 \frac{3 \mathrm{~h}}{4}$ to 3^{h} Irregular double wave in Dec. $\left(-4^{\prime}\right.$ to $\left.+4^{\prime}\right)$, the first portion double-crested. $\quad 1^{\mathrm{d}} 23 \frac{1}{2} \mathrm{~h}$ to $2^{\mathrm{d}} 0 \frac{3 \mathrm{~h}}{4}$ Wave in Dec. $\left(-4^{\prime}\right)$.
$2^{\mathrm{d}} 144^{\frac{1}{4}}$ to $1^{6} 6^{\mathrm{h}}$ Irregular double wave in Dec. $\left(+4^{\prime}\right.$ to $\left.-3^{\prime}\right)$. $1^{1} 4^{\frac{1}{2}}{ }^{\mathrm{h}}$ to $16 \frac{1}{2}{ }^{\mathrm{h}}$ Wave in H.F. ($-{ }^{-0028) . ~} 17 \frac{1}{4}{ }^{\mathrm{h}}$ to $18 \frac{1}{2}^{\mathrm{h}}$ Double-crested wave in H.F. (-.0023). 18^{h} to $19 \frac{1}{2}^{\mathrm{h}}$ Irregular wave in Dec. (-13^{\prime}), steep at commencement. $2^{\mathrm{d}} 23 \frac{1}{2}^{\mathrm{h}}$ to $3^{\mathrm{d}} \mathbf{1}^{\mathrm{h}}$ Small triple wave in Dec. $\left(-2^{\prime}, \mathbf{2}^{\prime},-2^{\prime}\right)$: steep wave in H.F. $(+\cdot 0030) . \quad 2^{\mathrm{d}} 23 \frac{3}{4}^{\mathrm{h}}$ to $3^{\mathrm{d}} 0 \frac{1}{2}^{\mathrm{h}}$ Decrease in V.F. $(-\cdot 0003)$.
$3^{\mathrm{d}} 20^{\mathrm{h}}$ to $2 \mathbf{1}^{\mathrm{h}}$ Two successive sharp waves in Dec. (-4^{\prime} and -4^{\prime}), followed till $233^{\frac{3}{b}}$ by an irregular doublecrested wave (-7^{\prime}). $\quad 20^{\mathrm{h}}$ to $23 \frac{1}{2}^{\mathrm{h}}$ Two successive waves in H.F. ($+\cdot 0024$ and $+\cdot 0024$), the first portion irregular.
$4^{\mathrm{d}} 19 \frac{1}{2}^{\mathrm{h}}$ to $22^{\frac{1}{2}}{ }^{\mathrm{h}}$ Two successive slow waves in H.F. (-.0012 and -0010). 193^{h} to $21^{\frac{1}{4}}$ Flat-crested wave in Dec. $\left(-7^{\prime}\right)$.
$5^{\mathrm{d}} \quad 18^{\mathrm{h}}$ to $21^{\frac{1}{2}}{ }^{\mathrm{h}}$ Two successive irregular double-crested waves in Dec. $\left(-6^{\prime}\right.$ and $\left.-6^{\prime}\right)$. $\quad 18 \frac{3 \mathrm{~h}}{4}$ to 20^{h} Doublecrested wave in H.F. $(+\infty 012) . \quad 5^{\mathrm{d}} 23 \frac{1}{2}^{\mathrm{h}}$ to $6^{\mathrm{d}} 0 \frac{1}{2}^{\mathrm{h}}$ Double wave in Dec. $\left(+3^{\prime}\right.$ to $\left.-3^{\prime}\right)$.
$6^{\mathrm{d}} 0 \frac{3 \mathrm{~h}}{4}$ to $1^{\frac{3 \mathrm{~h}}{4}}$ Irregular wave in H.F. $(+\cdot 0016)$. $1^{\frac{3}{4}}{ }^{\mathrm{h}}$ to $2^{\frac{1}{2}}{ }^{\mathrm{h}}$ Wave in Dec. $\left(+3^{\prime}\right)$. $2^{20 \frac{1}{4}}$ to 22^{h} Wave in

 $7^{\mathrm{d}} 0^{\frac{1}{4}}{ }^{\mathrm{h}}$ Decrease in V.F. (-•0003).
$7^{\mathrm{d}} 8^{\mathrm{h}}$ to $9 \frac{1}{4}^{\mathrm{h}}$ Wave in H.F. $(-\cdot 015) .8^{\frac{3}{4}}$ to $9 \frac{1}{4}^{\mathrm{h}}$ Sharp wave in Dec. $\left(-4^{\prime}\right)$. $17 \frac{1}{4}^{\mathrm{h}}$ to $18 \frac{1}{2}^{\mathrm{h}}$ Flat-crested wave in Dec. $\left(-3^{\prime}\right) . \quad 22^{h}$ to $23 \frac{1}{4}^{\text {h }}$ Wave in H.F. ($+\cdots 011$).
$8^{\mathrm{d}} 21^{\frac{3}{4} \mathrm{~h}}$ to $22 \frac{1}{2}^{\mathrm{h}}$ Flat-crested wave in Dec. $\left(-3^{\prime}\right)$. $\quad 2 \frac{1}{4}^{\mathrm{h}}$ to 23^{h} Wave in H.F. (+ -0012) .
$10^{d} 23^{h}$ to $11^{d} O \frac{1 \mathrm{~h}}{4}$ Wave in Dec. $\left(-3^{\prime}\right)$: in H.F. small.
$11^{\mathrm{d}} 17^{\mathrm{h}}$ to $18 \frac{1_{2}^{\mathrm{h}}}{}$ Wave in Dec. $\left(-3^{\prime}\right)$.
$13^{\mathrm{d}} 5^{\mathrm{h}}$ to $6 \frac{1 \mathrm{hh}}{4}$ Wave in Dec. $\left(+5^{\prime}\right)$. $5^{\frac{1}{2}}$ to $7 \frac{1}{4}^{\mathrm{h}}$ Wave in H.F. $(+0015)$. ${ }^{1} 5^{\frac{1 \mathrm{~h}}{}}$ to 183^{h} Irregular wave in H.F. ($-\cdot 0023$). ${ }_{16} 6_{4}^{\frac{1 \mathrm{~h}}{2}}$ to 17^{h} Wave in Dec. $\left(-4^{\prime}\right) . \quad 22^{\mathrm{h}}$ to 24^{h} Double wave in Dec. (-14^{\prime} to $+7^{\prime}$). $22 \frac{1}{4}$ h to $24^{\text {h }}$ Wave in V.F. $(+\cdot 0003)$. $13^{\mathrm{d}} 22 \frac{1}{2}^{\mathrm{h}}$ to $14^{\mathrm{d}} 0 \frac{1}{4}^{\mathrm{h}}$ Double wave in H.F. (-0008 to $+\cdot 0010$). $14^{d} 2^{h}$ to 3^{h} Double-crested wave in Dec. $\left(+6^{\prime}\right) . \quad 2^{\text {h }}$ to $2^{\frac{3}{4} h}$ Wave in H.F. (-0015).
$15^{\text {d }}{ }^{\frac{3}{4}}{ }^{h}$ to $2^{\frac{3}{4} h}$ Waves in Dec. $\left(+5^{\prime}\right)$ and H.F. $(+\cdot 0012)$, both steep at commencement. 5^{h} to $7 \frac{3}{4}^{h}$ Double wave in H.F. ($+\cdot 0013$ to - 0010). 94^{h} to $9 \frac{3 \mathrm{~h}}{4}$ Decrease in H.F. (-0012). $13 \frac{1}{4}^{\mathrm{h}}$ to $15 \frac{3 \mathrm{~h}}{4}$ Long hollow-crested wave in Dec. $\left(+5^{\prime}\right)$. $13 \frac{1 \mathrm{~h}}{4}$ to $16 \frac{1}{2}{ }^{\mathrm{h}}$ Irregular wave in H.F. (-0030). $\quad 22 \frac{3 \mathrm{~h}}{4}$ to $23 \frac{1 \mathrm{~h}}{2}$

$16^{\mathrm{d}} 1^{\mathrm{h}}$ to 3^{h} Irregular wave in Dec. $\left(+4^{\prime}\right)$. 2^{h} to $2 \frac{3}{4}^{\mathrm{h}}$ Wave in H.F. $(+\cdot 0010)$. $203^{\frac{3}{4}}$ to $2 \mathrm{I}^{\frac{3}{4}}$ Wave in Dec. (-4').
 Wave in Dec. $\left(-4^{\prime}\right)$.
$19^{d} 14^{\frac{3}{4}}$ to 16^{h} Flat-crested wave in Dec. $\left(-4^{\prime}\right)$.
$20^{\text {d }} 11 \frac{3 \mathrm{~h}}{4}$ to 13^{h} Wave in H.F. (-0011).

1910.

 Dec. $\left(+4^{\prime}\right)$, followed till $17 \frac{1}{2}^{\mathrm{h}}$ by a double wave $\left(+3^{\prime}\right.$ to $\left.-6^{\prime}\right)$. 17^{h} to 18^{I} Wave in H.F. $(+\circ 0017)$. $183^{3 \mathrm{~h}}$ to $20 \frac{3 \mathrm{~h}}{} \mathrm{~h}^{\mathrm{h}}$ Two successive waves in Dec. $\left(-4^{\prime}\right.$ and $\left.-7^{\prime}\right)$. 20^{h} to $2 \mathrm{I}^{\frac{1}{\mathrm{~h}}}$ Wave in H.F. $(+-002 \mathrm{I})$. $21 \mathrm{I}^{\frac{3 \mathrm{~h}}{}}$ to 23^{h} Irregular wave in Dec. $\left(-5^{\prime}\right)$.
$23^{\mathrm{d}} 6^{\mathrm{h}}$ to $7 \frac{1}{4}^{\mathrm{h}}$ Waves in Dec. $\left(+3^{\prime}\right)$ and H.F. (-0010).
 Dec. (-11^{\prime}), the first portion steep : irregular double wave in H.F. ($+\cdots 012$ to -0010).
 $\left(-3^{\prime}\right)$. 20^{h} to $22 \frac{2^{\mathrm{h}}}{}$ Double-crested wave in Dec. $\left(-5^{\prime}\right)$, followed till 23^{h} by a wave (-3^{\prime}). $22 \frac{1_{2}^{\mathrm{h}}}{}$ to $24^{\text {b }}$ Wave in H.F. (+ -0017).
$2^{6^{d}} 1 \frac{33^{b}}{4}$ to $2 \frac{3 \mathrm{~h}}{4}$ Wave in Dec. $\left(+3^{\prime}\right)$.
$28^{\mathrm{d}} 6^{\mathrm{h}}$ to $29^{\mathrm{d}} 6^{\mathrm{h}}$ See Plate III.
 Irregular wave in Dec. $\left(-5^{\prime}\right)$. 16^{h} to 17^{h} Wave in H.F. (-0018). 1612 to $18 \frac{1}{4}^{\mathrm{h}}$ Flat-crested wave in Dec. (-6^{\prime}), steep at commencement. 20^{h} to ${22^{\frac{1}{4} \mathrm{~h}}}^{\frac{\mathrm{h}}{}}$ Irregular wave in Dec. (-10^{\prime}), the first portion steep.
 $30^{0} 0 \frac{1 \mathrm{~h}}{4}$ Sharp wave in H.F. $(+\cdot 0015)$.
 Wave in H.F. $(+\cdot 0026)$.
 H.F.

Explanation of the Plates.

The magnetic motions figured on the Plates are:-
(1.) Those for days of lesser disturbance-March 27-28, 28-29, June 20, August 22, September 29, December $28^{\text {d }} 6^{\text {b }}$ to $29^{d} 6^{\text {h }}$.
(2.) Those for four quiet days-February 6, May 12, August 8, November 13-which are given as types of the ordinary diurnal movement at four seasons of the year.

The time is Greenwich Civil Time (commencing at midnight, and counting the hours from 0 to 24).

The magnetic declination, horizontal force, and vertical force are indicated by the letters D., H., and V. respectively ; the declination (west) is expressed in minutes of arc, the units for horizontal and vertical force are -oooor of the whole horizontal and vertical forces respectively, the corresponding scales being given on the sides of each diagram. Equal changes of amplitude in the several registers correspond nearly to equal changes of absolute magnetic force, 0.001 of a C.G.S. unit being represented by $0^{\text {in. }} 80=20.2$ in the declination curve, by $0^{\mathrm{mm}} 73=18.4$ in the horizontal force curve, and by $\mathrm{o}^{\mathrm{in} \cdot} 59=\mathrm{I}^{\mathrm{mm} .1}$ in the vertical force curve.

Downward motion indicates increase of declination and of horizontal and vertical force.

An arrow (\uparrow) indicates that the register was out of range of registration in the direction of the arrow head.

The temperatures (Fahrenheit) of the horizontal, and vertical force magnets at each hour are given in small figures on the Diagrams.

MAGNETIC DISTURBANCES RECORDED AT THE ROYAL OBSERVATORY, GREENWICH, 1910.

ROYAL OBSERVATORY, GREENWICH, 1910.

TYPES OF MAGNETIC DIURNAL VARIATIONS AT FOUR SEASONS OF THE YEAR RECORDED AT THE ROYAL OBSERVATORY, GREENWICH, 1910.

ROYAL OBSERVATORY, GREENWICH.

RESULTS

OF

METEOROLOGICAL OBSERVATIONS.

1910.

$\begin{gathered} \text { MONTH } \\ \text { and } \\ \text { DAY, } \\ \text { rgro. } \end{gathered}$	Phases of the Moon．		temperature．							Difference between the Air Temperature and Dew PointTemperature．				Temperature． Of Radiation．		0芸 울웅菏范 式気家莫范品路落嵒	Daily Amount of Ozone．	Electricity，
			Of the Air．															
							Excess			Mean．	Greatest．	Least．						
							Average							吕	$\stackrel{9}{\square}$			
				$$		Values．	${ }_{65}$ of Years．								范罭			
		in．	\bigcirc	－	－	\bigcirc	\bigcirc	\bigcirc	\bigcirc	－	－	－		－	－	in．		
Jan．I	\ldots	$30 \cdot 162$	$45 \cdot 8$	$33^{\cdot 1}$	12.7	$40^{\circ} 1$	＋1．5	$38 \cdot 8$	$37 \cdot 1$	3.0	$6 \cdot 2$	$1 \cdot 1$	90	$52 \cdot 1$	$26 \cdot 2$	0.070	$0 \cdot 0$	$m \mathrm{P}$ ：wP
		$30 \cdot 136$	$55 \cdot 3$	$45^{\circ} 8$	9.5	$50 \cdot 0$	＋11．6	49.2	$48 \cdot 3$	$1 \cdot 7$	$3 \cdot 6$	0.2	94	55^{\prime} I	$44^{\prime} 2$	0.005	$0 \cdot 0$	wwP
3	In Equator：	30.204	$50 \cdot 8$	$43^{\circ} \mathrm{O}$	$7 \cdot 8$	$47 \cdot 6$	＋93	$46 \cdot 1$	$44^{\prime} 4$	$3 \cdot 2$	$4 \cdot 8$	I•3	89	50.6	37.2	$0 \cdot 000$	$0 \cdot 0$	wwP ：wwP ：wP
4	Apogee	30.275	$45^{\circ} 2$	$39^{\circ} 1$	$6 \cdot 1$	$43^{\circ} \mathrm{O}$	＋47	$42 \cdot 5$	41.9	$1 \cdot 1$	$3 \cdot 1$	$0 \cdot 4$	96	$50 \cdot 5$	34.5	$0 \cdot 000$	0.2	wP
5	－	30.272	$42 \cdot 0$	39°	$3 \cdot 0$	40.9	＋ 27	$40 \cdot 4$	$39 \cdot 8$	$1 \cdot 1$	$2 \cdot 0$	0.5	96	$42 \cdot 2$	39°	$0 \cdot 000$	0.8	wP
6	．．．	$30 \cdot 362$	413	367	$4 \cdot 6$	$38 \cdot 9$	$+0.8$	$38 \cdot+$	37.7	1.2	1．8	0.5	95	$43 \cdot 2$	$37 \cdot 2$	$0 \cdot 000$	$1 \cdot 5$	wP
7	\ldots	30.375	40•7	37.8	$2 \cdot 9$	$38 \cdot 9$	$+0.9$	$38 \cdot 1$	$37^{\circ} \mathrm{O}$	$1 \cdot 9$	$3 \cdot 2$	$0 \cdot 7$	93	43°	37.8	$0 \cdot 000$	4.5	
8	\ldots	30.022	$47 \cdot 8$	$38 \cdot 4$	$9 \cdot 4$	42.9	$+5 \cdot 0$	41.4	39.6	$3 \cdot 3$	$5 \cdot 1$	1.4	88	54.7	38.4	$0 \cdot 042$	$5 \cdot 0$	$w P: w P: w P, w N$
9	．．．	29.799	$52 \cdot 1$	449	$7 \cdot 2$	$50^{\circ} 0$	＋12．I	$48 \cdot 4$	$46 \cdot 7$	3.3	$5 \cdot 4$	I•9	89	54.9	38.0	$0 \cdot 000$	14.0	wwP
10	$\underset{\text { ceen }}{\substack{\text { Greatest } \\ \text { Deination } \\ \text { S．}}}$	29.876	52.2	$43^{1.1}$	$9 \cdot 1$	47.9	$+100$	$45^{\circ} 5$	$42^{\circ} 9$	$5{ }^{\circ}$	10.4	2.2	84	74.9	35.4	0.126	$7 \cdot 8$	$w w P: w P, m N: w P$
11	New	29.686	$45 \cdot 3$	$36 \cdot 7$	$8 \cdot 6$	$42 \cdot 1$	＋ 42	39.2	$35 \cdot 6$	$6 \cdot 5$	$10 \cdot 8$	$2 \cdot 1$	79	$66 \cdot 0$	$3 \mathrm{I} \cdot 8$	－ 100	$5 \cdot 2$	$w P, w N: w P, w N: v P, ~ v N$
12	．．．	29.469	$40 \cdot 0$	33.2	$6 \cdot 8$	$35^{\circ} 8$	－2．1	33.3	29.5	$6 \cdot 3$	$8 \cdot 7$	$2 \cdot 5$	77	$57 \cdot 0$	28．0	0.000	0.0	wP ：mP $: \mathrm{sP}$
13	\ldots	29.978	$44^{\circ} 2$	3100	13.2	$37 \cdot 2$	－0．8	$35^{\prime} 1$	32.2	5°	$7 \cdot 4$	$2 \cdot 8$	82	$48 \cdot 0$	24＇I	－．008	$1 \cdot 5$	mP
14	．．．	29.906	53.1	$44 \cdot 2$	8.9	$48 \cdot 6$	＋10．6	$46 \cdot 5$	$44 \cdot 3$	$4 \cdot 3$	$8 \cdot 2$	1.5	85	$65 \cdot 7$	41.0	$0 \cdot 020$	4.5	
15	\ldots	30.014	$50 \cdot 5$	$42 \cdot 3$	$8 \cdot 2$	$46 \cdot 5$	＋ 8.4	45°	$43 \cdot 3$	$3 \cdot 2$	$5 \cdot 0$	I＇9	90	52.0	$35^{\circ} 1$	0.040	$1 \cdot 5$	wP ：wP ：wwP
16		29.729	53°	$42 \cdot 4$	10.6	49.4	＋III	$47 \cdot 3$	$45^{\circ} 0$	4.4	$7 \cdot 5$	$2 \cdot 1$	86	$60 \cdot 8$	$38 \cdot 0$	$0 \cdot 050$	57	$w w P: w w P: w P, w N$
17	$\xrightarrow{\text { In Equator }}$ Perigee	29.588	$45^{\circ} \mathrm{O}$	$39^{\circ} 4$	$5 \cdot 6$	41.2	＋ 27	$38 \cdot 8$	$35 \cdot 8$	$5 \cdot 4$	$8 \cdot 1$	$2 \cdot 8$	82	57.9	33.4	－○44	$6 \cdot 0$	$w P: w P, \vee N: w P$
18	First Quarter	29.315	$47 \cdot 0$	397	$7 \cdot 3$	43.4	$+4 \cdot 8$	413	$38 \cdot 8$	4.6	$7 \cdot 8$	I•8	84	53.1	34.7	－069	$3 \cdot 8$	wP，mN ：wP ：vN，wP
19	\ldots	29.305	44＊0	$37 \cdot 8$	$6 \cdot 2$	$41 \cdot 1$	＋2．4	$37 \cdot 8$	$33 \cdot 7$	7%	9.9	$4 \cdot 6$	75	57.0	33°	$0 \cdot 000$	$0 \cdot 0$	wP ：mP ：mP
20	\ldots	29.419	$42 \cdot 1$ $36 \cdot 6$	34．1	$8 \cdot 0$	$38 \cdot 0$	－ 0.8	$35^{\circ} 8$	32.8	$5 \cdot 2$	8.5	$2 \cdot 7$	81	$46 \cdot 0$	29.4	$0 \cdot 000$	00	
21	－．	29.587	$36 \cdot 6$	$28 \cdot 9$	$7 \cdot 7$	$33^{\circ} 1$	－ 57	31.1	27^{2}	$5 \cdot 9$	$7 \cdot 8$	3.4	78	$44 \cdot 8$	$21^{\circ} \mathrm{O}$	$0 \cdot 000$	1.0	sP
22		29.771	34^{6}	26.9	7.7	31.1	－777	28.8	22.7	$8 \cdot 4$	11.6	$2 \cdot 6$	69	$50 \cdot 8$	179	$0 \cdot 000$	$0 \cdot 0$	mP ： sP ： sP
23	$\underset{\text { Declination }}{\text { Greatest }}$ N．	29.677	42.7	29.4	13.3	$34 \cdot 8$	－4．1	$34^{\circ} \mathrm{I}$	33°	$1 \cdot 8$	$6 \cdot 8$	$0 \cdot 0$	93	39°	$25 \cdot 1$	0.253	0.7	$\mathrm{vP}, \mathrm{mN}: w \mathrm{w}, \mathrm{vN}$
24	decmation	28.667	$42 \cdot 2$	$34^{\circ} \mathrm{I}$	$8 \cdot 1$	39.5	$+0.6$	$37 \cdot 8$	$35^{\circ} 6$	3.9	$6 \cdot 9$	1.5	86	59°	$32 \cdot 0$	$0 \cdot 318$	$2 \cdot 3$	vN，wwP ：mP ：mP，ssN
25	Full	28.909	$36 \cdot 9$	26.5	104	33.4	－ 5.7	$30 \cdot 4$	24.7	$8 \cdot 7$	12.0	4.5	70	57.1	21.6	0．000	4.0 0.0	$\begin{gathered} w P, s N: m P \\ s P \end{gathered}: s P$
26	．．	29.025	33°	$23 \cdot 8$	9.2	$28 \cdot 5$	－10．8	26.4	18.4	$10 \cdot 1$	12.7	3.7	64	50.7 58.8	18.6	$0 \cdot 000$	0.0 6.7	$\stackrel{\mathrm{sP}}{\mathrm{sP}: \mathrm{sP}: \mathrm{mP}, \mathrm{mN}}$
27	\cdots	29.210	$35^{\circ} \mathrm{I}$	20.3	14.8	28.7	-10.8	$26 \cdot 1$	16.3	12.4	179	3.4	59	$58 \cdot 8$	$15 \cdot 1$	$0 \cdot 005$	$6 \cdot 7$	$s \mathrm{P}: \mathrm{sP}: \mathrm{mP}, \mathrm{mN}$
28	．．．	28.744	$44^{\circ} 9$	$32 \cdot 6$	12.3 8.7	39°	－0．6	$36 \cdot 9$	$34^{\circ} 2$	4.8	$10 \cdot 6$	$0 \cdot 9$	83	72.2	$31 \circ$ 20	0．572	$6 \cdot 3$	$\mathrm{vP}, \vee N: w P: \vee P, v N$
29		29.167	$4 \mathrm{I}^{\circ} \mathrm{O}$	$32 \cdot 3$	$8 \cdot 7$	$36 \cdot 0$	－ 37	33.2	29°	$7{ }^{\circ}$	97	$4 \cdot 2$	76	$66 \cdot 8$	28.7	$0 \cdot 000$	$4{ }^{\circ} \mathrm{O}$	$\mathrm{wP}: \mathrm{mP}: \mathrm{mP}$
30	In Equator	29.706	$38 \cdot 0$	29 ${ }^{\text {I }}$	$8 \cdot 9$	34^{1}	$-5 \cdot 6$	31.8	$27 \cdot 8$	$6 \cdot 3$	$7 ` 9$	$1 \cdot 3$	77	41.8	13.4	$0 \cdot 000$	$0 \cdot 0$	mP ：sP ：sP
31	．．．	29.800	$45^{\circ} \mathrm{O}$	$30 \cdot 5$	14.5	$38 \cdot 1$	－ 1.6	$35^{\circ} 9$	32.9	$5 \cdot 2$	$8 \cdot 1$	$3 \cdot 9$	82	$68 \cdot 0$	22.9	$0 \cdot 000$	1•3	mP
Means	－••	29.682	44^{1}	354	$8 \cdot 8$	$40 \cdot 0$	＋1．4	$38 \cdot 1$	$35^{\circ} \mathrm{I}$	49	77	$2 \cdot 1$	83°	54.6	30.4	$\begin{gathered} \text { sum } \\ 1.722 \end{gathered}$	$2 \cdot 8$	\ldots
Number of Column for Reference． Referenc	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18

The results apply to the civil day．
The mean reading of the Barometer（Column 2）and the mean temperatures of the Air and Evaporation（Columns 6 and 8）are deduced from the photographic records． The average temperature（Column 7）is deduced from the 65 years＇observations，1841－1905．The temperature of the Dew Point（Column 9）and the Degree of Humidity（Column 13）are deduced from the corresponding temperatures of the Air and Evaporation by means of Glaisher＇s Hygrometrical Tables． The mean difference between the Air and Dew Point Temperatures（Column ro）is the difference between the numbers in Columns 6 and 9 ，and the Greatest and Least Differences（Columns is and 12）are deduced from the 24 hourly photographic measures of the Dry－bulb and Wet－bulb Thermometers．
The values given in Columns $3,4,5,14$ ，and 15 are derived from eye－readings of self－registering thermometers．
The mean reading of the Barometer for the month was $\mathbf{2 9}{ }^{\text {in }} \cdot 682$ ，being $0^{\text {in }} \cdot 112$ lower than the average for the 65 years， 1841 －1905．
Temperature gf the Air．
The highest in the month was $55^{\circ} \cdot 3$ on January 2；the lowest in the month was $20^{\circ} \cdot 3$ on January 27 ；and the range was $35^{\circ} \circ$ ．
The mean of all the highest daily readings in the month was $44^{\circ} \cdot 1$ ，being $1^{\circ} \circ$ higher than the average for the 65 years，r841－1905．
The mean of all the lowest daily readings in the month was $35^{\circ} 4$ ，being $1^{\circ}{ }^{\circ}{ }_{7}$ higher than the average for the 65 years， $1841-1905$ ．
The mean of the daily ranges was $8^{\circ} \cdot 8$ ，being $0^{\circ} \cdot 6$ less than the average for the 65 years， $1841-1905$ ．
The mean for the month was $40^{\circ} \circ$ ，being $1^{\circ}{ }_{4}$ higher than the average for the 65 years， $1841-1905$ ．

The results apply to the civil day.
The mean reading of the Barometer (Column 2) and the mean temperatures of the Air and Evaporation (Columns 6 and 8) are deduced from the photographic records. The average temperature (Column 7) is deduced from the 65 years' observations, 1841-1905. The temperature of the Dew Point (Column 9) and the Degree of Humidity (Column 13) are deduced from the corresponding temperatures of the Air and Evaporation by means of and 6 and 9 and the Greatest and Least The mean difference between the Air and Dew Point Temperatures (Column 10) is the difference between the numbers in Columns 6 and 9, and the Greatest and Least Differences (Columns ir and i2) are deduced from the 24 hourly photographic measures of the Dry-bulb and Wet-bulb Thermometers.
The values given in Columns 3, 4, 5, 14, and 15 are derived from eye-readings of self-registering thermometers.

* Rainfall (Column 16). Amounts entered on February 4 and 9 are derived from fog and frost.

The mean reading of the Barometer for the month was $29^{\text {in }} 49 \mathrm{I}$, being oin 3 mi lower than the average for the 65 years, 1841-1905.

Temperature of the Air.

The highest in the month was $56^{\circ} \circ$ on February 17 ; the lowest in the month was $27^{\circ} \cdot 5$ on February 5 ; and the range was $28^{\circ} \cdot 5$.
The mean of all the highest daily readings in the month was $47^{\circ} .9$, being $2^{\circ} \cdot 7$ higher thau the average for the 65 years, 1841-1905.
The mean of all the lowest daily readings in the month was $35^{\circ}{ }^{\circ}$, being $\mathrm{x}^{\circ}{ }^{\circ} ;$ higher than the average for the 65 years, 1841-1905.
The mean of the daily ranges was $12^{\circ}{ }_{3}$, being $1^{\circ} \cdot 3$ greater than the average for the 65 years, $1841-1905$.
The mean for the month was $42^{\circ} \circ$, being $2^{\circ}{ }_{5}$ higher than the average for the 65 years, 184^{1-1905}.

The mean Temperature of Evaporation for the month was $40^{\circ} \cdot 0$, being $2^{\circ} \cdot 3$ higher than
The mean Temperature of the Dew Point for the month was $37^{\circ} \cdot 6$, being $2^{\circ} \cdot 2$ higher than
The mean Degree of Humidity for the month was $84^{\circ} 9$, being 0.6 less than
The mean Elastic Force of Vapour for the month was $0^{\text {in }} \cdot{ }_{225}$, being $o^{\text {in }} \cdot{ }^{\circ} \delta$ greater than The mean Weight of Vapour in a Cubic Foot of Air for the month was $2 \mathrm{grs} \cdot 6$, being obr $\cdot 2$ greater than
The mean Weight of a Cubic Foot of Air for the month was 545 grains, being 8 grains less than
The mean amount of Cloud for the month (a clear sky being represented by 0 , and an overcast sky by 10) was $7 \cdot 1$.
The mean proportion of Sunshine for the month (constant sunshine being represented by 1) was 0.253 . The maximum daily amount of Sunshine was 7 ' 1 hours on February 26 .
The highest reading of the Solar Radiation Thermometer was $90^{\circ} \cdot 4$ on February 23 ; and the lowest reading of the Terrestrial Radiation Thermometer was $20^{\circ} \cdot 8$ on February 5 .
The mean daily distribution of Ozone for the 12 hours ending 9^{h} was $3 \cdot 1$; for the 6 hours ending 15^{h} was 10 ; and for the 6 bours ending 21^{h} was 0.5 .
The Proportions of Wind referred to the cardinal points were N. I, E. 1, S. 15, and W. ir.
The Greatest Pressure of the Wind in the month was 30% lbs. on the square foot on February 20. The mean daily Horizontal Movement of the Air for the month was 407 miles ; the greatest daily value was 751 miles on February 17; and the least daily value was 173 miles on February 9 .
Rain (oin.005 or over) fell on 24 days in the month, amounting to $2^{\mathrm{in}} \cdot 68$, as measured by gauge No. 6 partly sunk below the ground; being $\mathrm{i}^{\mathrm{in}} \cdot 207$ greater than the average fall for the 65 years, 1841 -1905.

The results apply to the civil day.
The mean reading of the Barometer (Column 2) and the mean temperatures of the Air and Evaporation (Columns 6 and 8) are deduced from the photographic records. The average temperature (Column 7) is deduced from the 65 years observations, 1841-1905. The temperature of the Dew Point Hygrometrical Tables Degree of Humidity (Column 13) are deduced from the corresponding temperatures of the Air and Evaporation by means of Glaisher The mean difference between the Air and Dew Point Temperatures (Column 10) is the difference between the numbers in Colum
The mean difference between the Air and Dew Point Temperatures (Corumin measures of the Dry-bulb and Wet-bulb Thermometers.
Differences (Columns in and 12) are deduced from the 24 hourly photographic measuistering thermometers.

The mean reading of the Barometer for the month was $29^{\text {in }} \cdot 979$, being ${ }^{\text {in }} \cdot 233$ higher than the average for the 65 years, $1841-1905$.
Temperature of the Air.
The highest in the month was $57^{\circ} \cdot 7$ on March 7; the lowest in the month was $25^{\circ} .5$ on March 23 ; and the range was $32^{\circ} \cdot 2$.
The mean of all the highest daily readings in the month was $51^{\circ}{ }_{3}$, being $1^{\circ} .5$ higher than the average for the 65 years, $1841-1905$.
lower than the average for the 65 years, 184I-1905.
的
The mean for the month was $42^{\circ} \circ$, being $1^{\circ} \circ$ higluer than the average for the 65 years, $1841-1905$.

The mean Temperature of Evaporation for the month was $40^{\circ} \cdot 2$, being $0^{\circ} \cdot 8$ higher than
The mean Temperature of the Dew Point for the month was $37^{\circ} \cdot \mathbf{I}$, being $0^{\circ} \cdot 8$ higher than
The mean Degree of Humidity for the month was $80 \cdot 8$, being 0.3 greater than
The mean Elastic Force of Vapour for the month was oin 221 , being oin 007 greater than
The mean Weight of Vapour in a Cubic Foot of Air for the month was $2 \mathrm{grs} \cdot 5$, being the same as
The mean Weight of a Cubic Foot of Air for the month was 553 grains, being 4 grains greater than
The mean amount of Cloud for the month (a clear sky being represented by \circ, and an overcast sky by io) was 5.6 .
The mean proportion of Sunshine for the month (constant sunshine being represented by 1) was 0.408 . The maximum daily amount of Sunshine was 10.3 hours on March 3 I .
The highest reading of the Solar Radiation Thermometer was $108^{\circ} .6$ on March 29; and the lowest reading of the Terrestrial Radiation Thermometer was $21^{\circ}{ }^{\circ} 3$ on March 15 .
The mean daily distribution of Ozone for the 12 hours ending 9^{h} was $1 \cdot 2$; for the 6 hours ending 15^{h} was $1 \cdot 5$; and for the 6 hours ending $21^{\text {h }}$ was 0.4 .
The Proportions of Wind referred to the cardinal points were N. 9, E. 6, S. 8, and W. 4. Four days were calm.
The Greatest Pressure of the Wind in the month was 12.8 lbs . on the square foot on March 18 . The mean daily Horizontal Movement of the Air for the month was 251 miles ; the greatest daily value was 494 miles on March 31 ; and the least daily value was 100 miles on March 27.
Rain (oin 005 or over) fell on 10 days in the month, amounting to $\mathrm{I}^{\text {in }} \cdot \frac{103}{}$, as measured by gauge No. 6 partly sunk below the ground; being oin 417 less than the average fall for the 65 years, $184 \mathrm{I}-1905$.

The results apply to the civil day.
The mean reading of the Barometer (Column 2) and the mean temperatures of the Air and Evaporation (Columns 6 and 8) are deduced from the photographic records. The average temperature (Column 7) is deduced from the 65 years' observations, 1841-1905. The temperature of the Dew Point (Column 9) and the Degree of Humidity (Column 13) are deduced trom the corresponding temperatures of the Air and Evaporation by means of Glaisher's Hygrometrical Tables. The mean difference between the Air and Dew Point Temperatures (Column 10) is the difference between the numbers in Columns 6 and 9 , and the Greatest and Least Differences (Columns 11 and 12) are deduced from the 24 hourly photographic measures of the Dry-bulb and Wet-bulb Thermometers.
The values given in Columns 3, 4, 5, 14, and 15 are derived from eye-readings of self-registering thermometers.
The mean reading of the Barometer for the month was $29^{\text {in }} \cdot 662$, being oin $\cdot 086$ lower than the average for the 65 years, $\mathbf{1 8 4 1 - 1 9 0 5 .}$
Templeature of the Air.
The highest in the month was $65^{\circ} .5$ on April 21; the lowest in the month was $25^{\circ} 5$ on April 3; and the range was $40^{\circ} \cdot 0$.
The mean of all the highest daily readings in the month was $55^{\circ} 4$, being $x^{\circ} .8$ lower than the average for the 65 years, $1841-1905$.
The mean of all the lowest daily readings in the month was $3^{\circ} \cdot{ }^{\circ}$, being $0^{\circ} \cdot 2$ lower than the average for the 65 years, 1841-1905.
The mean of the daily ranges was $16^{\circ} \cdot 7$, being $1^{\circ} \cdot 5$ less than the average for the 65 years, $1841-1905$.
The mean for the month was $46^{\circ} 4$, being $0^{\circ} 9$ lower than the average for the 65 years, 1841-1905.

The meai Temperature of Evaporation for the month was $43^{\circ}{ }^{\circ}$, being $0^{\circ} \cdot 7$ lower than
The mean Temperature of the Dew Point for the month was $39^{\circ} 5$, being $0^{\circ} \cdot 6$ lower than
The mean Degree of Humidity for the month was $77^{\circ} 4$, being 1.6 greater than
The mean Elastic Force of Vapour for the month was oin $\cdot 242$, being oin $\cdot 006$ less than
The mean Weight of Vapour in a Cubic Foot of Air for the month was $\mathbf{2 g r s} \cdot 8$, being ogr $\cdot \mathbf{r}$ less than
The mean Weight of a Cubic Foot of Air for the month was 543 grains, being the same as
The mean amount of Cloud for the month (a clear sky being represented by 0 , and an overcast sky by io) was $7 \% 8$.
The mean proportion of Sunshine for the month (constant sunshine being represented by x) was 0.314 . The maximum daily amount of Sunshine was 12.4 hours on April 27 .
The highest reading of the Solar Radiation Thermometer was $122^{\circ} 1$ on April 16 ; and the lowest reading of the Terrestrial Radiation Thermometer was $15^{\circ} 9$ on April 3 .
The mean daily distribution of $O z o n c$ for the 12 hours ending 9^{h} was 2.2 ; for the 6 hours ending $15^{\text {h }}$ was $2 \circ$; and for the 6 hours ending $21^{\text {h }}$ was $0^{\circ} 9$.
The Proportions of Wind referred to the cardinal points were N. 7, E. 3, S. 9, and W. 9. Two days were calm.
The Greatest Pressure of the Wind in the month was $14^{\circ} 9 \mathrm{lbs}$. on the square foot on April 28. The mean daily Horizontal Movement of the Air for the month was 321 miles; the greatest daily value was 626 miles on April 24 ; and the least daily value was 130 miles on April 3 .
Rain (oin $\cdot 005$ or over) fell on 16 days in the month, amounting to $2^{\text {in }} \cdot 619$, as measured by gauge No. 6 partly sunk below the ground; being $\mathrm{i}^{\text {in }} \cdot 053$ greater than the average fall for the 65 years, 1841-1905.

The results apply to the civil day.
The mean reading of the Barometer (Column 2) and the mean temperatures of the Air and Evaporation (Columns 6 and 8) are deduced from the photographic records. The Degree of Heidity (Column in) and Degree of Humidity (Column 13) are deduced from the corresponding temperat res difference between the numbers in Columns 6 and 9 , and the Greatest and Least Differences (Columns II and I2) are deduced from the 24 hourly photographic measures of the Dry-bulb and Wet-bulb Thermometers.
The values given in Columns 3, 4, 5, 14, and 15 are derived from eye-readings of self-registering thermometers.
The mean reading of the Barometer for the month was $29^{\text {in }} \cdot 706$, being oin $^{\circ} \cdot 88$ lower than the average for the 65 years, $1841-1905$.

Temperature of the Air.

The highest in the month was 78°. on May 28 ; the lowest in the month was $30^{\circ} 4$ on May 10 ; and the range was $47^{\circ} 6$.
The mean of all the highest daily readings in the month was $63^{\circ} \cdot 3$, being $0^{\circ} \cdot 6$ lower than the average for the 65 years, $1841-1905$.

The mean of the daily ranges was $18^{\circ} \circ$, being $2^{\circ} \cdot 2$ less than the average for the 65 years, $1841-1905$.
The mean for the month was $53^{\circ} \circ$, being $\circ^{\circ} \cdot 1$ lower than the average for the 65 years, $1841-1905$.

The mean Trmucrature of Evaporation for the month was $49^{\circ} \cdot 3$, being $0^{\circ} \cdot 3$ higher than The mean Temperature of the Dew Point for the month was $45^{\circ} \cdot 6$, being $0^{\circ} \cdot 6$ higher than
The mean Degree of Humidity for the month was 76.9 , being 2.7 greater than
The mean Elastic Force of Vapour for the month was oin $\cdot 306$, being oin $\cdot 007$ greater than
The mean Weight of Vapour in a Cubic Foot of Air for the month was $3^{\mathrm{grs}} \cdot 5$, being ogr $\cdot{ }_{\mathrm{I}}$ greater than
The mean Weight of a Cubic Foot of Air for the month was 536 grains, being 2 grains less than
The mean amount of Cloud for the month (a clear sky being represented by o, and an overcast sky by ro) was 6.7 .
The mean proportion of Sunshine for the month (constant sunshine being represented by 1) was 0.456 . The maximum daily amount of Sunshine was i4.I hours on May 23 . The highest reading of the Solar Radiation Thermometer was $137^{\circ} \times$ on May 20 ; and the lowest reading of the Terrestrial Radiation Thermometer was $25^{\circ} \cdot 1$ on May $\mathbf{1 0}$. The mean daily distribution of Ozone for the 12 hours ending 9^{h} was 19 ; for the 6 hours ending $15^{\text {h }}$ was 2.4 ; and for the 6 bours ending 21^{h} was 0.6 . The Proportions of Wind referred to the cardinal points were N. 10, E. 7, S. 5, and W. 8. One day was calm.
The Greatest Pressure of the Wind in the month was $17^{\circ} \mathrm{l}$ lbs. on the square foot on May 14. The mean daily Horizontal Movement of the Air for the month was 308 miles; the greatest daily value was 639 miles on May 6 ; and the least daily value was 150 miles on May 27.
Rain (oin.005 or over) fell on 19 days in the month, amounting to $2^{\text {in }} \cdot 243$, as measured by gange No. 6 partly sunk below the ground; being oin $\cdot 328$ greater than the average fall for the 65 years, 1841-1905.

The results apply to the civil day.
The mean reading of the Barometer (Column 2) and the mean temperatures of the Air and Evaporation (Columns 6 and 8) are deduced from the photographic records. The average temperature (Column 7) is deduced from the 65 years' observations, 1841-1905. The temperature of the Dew Point (Column 9) and the Degree of Humidity (Column 13) are deduced from the corresponding temperatures of the Air and Evaporation by means of Glaisher's Hygrometrical Tables. The mean difference between the Air and Dew Point Temperatures (Column 10) is the difference between the numbers in Colunins 6 and 9 , and the Greatest and Least Differences (Columns ix and 12) are deduced from the 24 hourly photographic measures of the Dry-bulb and Wet-bulb Thermometers.
The values given in Columns 3, 4, 5, 14, and 15 are derived from eye-readings of self-registering thermometers.

* Rainfall (Column 16). Amount entered on June 8 is derived from dew.

The mean reading of the Barometer for the month was $29^{\text {in }}{ }^{7} 1 \mathrm{II}$, being oin $\cdot 104$ lower than the average for the 65 years, 1841-1905.
Temperature of the Air
The highest in the month was $82^{\circ} \cdot 2$ on June 20 ; the lowest in the month was $43^{\circ} \cdot 6$ on June 16 ; and the range was $38^{\circ} .6$.
The mean of all the highest daily readings in the month was $71^{\circ} \circ$ being $0^{\circ} \cdot 3$ higher than the average for the 65 years, $1841-1905$
The mean of all the lowest daily readings in the month was $51^{\circ} .6$, being $1^{\circ}{ }_{7}$ higher than the average for the 65 years, $1841-1905$.
The mean of the daily ranges was $19^{\circ} 4$, being $1^{\circ} .4$ less than the average for the 65 years, $1841-1905$.
The mean for the month was $60^{\circ} \cdot \mathbf{2}$, being $0^{\circ} .8$ higher than the average for the 65 years, $184^{1-1905 .}$

The mean Temperature of Evaporation for the month was $5^{\circ} \cdot 2$, being $1^{\circ} \cdot 3$ higher than
The mean Temperature of the Dew Point for the month was $52^{\circ}{ }^{\circ}$, being $1^{\circ} \cdot 8$ higher than
The mean Degree of Humidity for the month was $76^{\circ} 9$, being $3^{\circ} 3$ greater than
The mean Elastic Force of Vapour for the month was $0^{\text {in }} \cdot 399$, being $0^{\text {in }} \cdot 026$ greater than
The mean Weight of Vapour in a Cubic Foot of Air for the month was $4^{\mathrm{grs}} \cdot 4$, being ogr^{2} greater than
The mean Weight of a Cubic Foot of Air for the month was 528 grains, being 3 grains less than
The mean amount of Cloud for the month (a clear sky being represented by o, and an overcast sky by 10) was 7.5 .
The mean proportion of Sunshine for the month (constant sunshine being represented by 1) was $0^{\circ} 374$. The maximum daily amount of Sunshine was $15^{\circ} \mathrm{I}$ hours on June 20 .
The highest reading of the Solar Radiation Thermometer was $144^{\circ} \cdot 5$ on June 21 ; and the lowest reading of the Terrestrial Radiation Thermometer was $33^{\circ}{ }^{\circ} 4$ on June 16 .
The mean daily distribution of Ozone for the 12 hours ending $9^{\text {h }}$ was 1.5 ; for the 6 hours ending 15^{h} was 2.6 ; and for the 6 hours ending 21^{h} was $0 \cdot 6$.
The Proportions of Wind referred to the cardinal points were N. 8, E. 6, S. 6, and W. 8. Two days were calm.
The Greatest Pressure of the Wind in the month was 8.3 lbs . on the square foot on June 28 . The mean daily Horizontal Movement of the Air for the month was 251 miles; the greatest daily value was 574 miles on June 28 ; and the least daily value was 127 miles on June 10 .
Rain (oin 005 or over) fell on 13 days in the month, amounting to $2^{\text {in }} \cdot 077$, as measured by gauge No. 6 partly sunk below the ground ; being $\mathrm{o}^{\mathrm{in}} \cdot \mathrm{o} 39 \mathrm{greater}$ than the average fall for the 65 years, 1841 1-1905.

The results apply to the civil day.
The mean reading of the Barometer (Column 2) and the mean temperatures of the Air and Evaporation (Columns 6 and 8) are deduced from the photographic records. The average temperature (Column 7) is deduced from the 65 years' observations, 1841-1905. The temperature of the Dew Point (Column 9) and the Degree of Humidity (Column 13) are deduced from the corresponding temperatures of the Air and Evaporation by means of Glaisher's Hygrometrical Tables.
Degree of Humidity (Column 13) are deduced from the corresponding temperatures of the Air and Evaporation by means of Glaisher's Hygrometrical Tables.
The mean difference between the Air and Dew Point Temperatures (Column 10) is the difference between the numbers in Columns 6 and 9 , and the Greatest and Least
The mean difference between the Air and Dew Point Temperatures (Column io) is the difference between the numbers in Colum
Differences (Columns in and 12) are deduced from the 24 hourly photographic measures of the Dry-bulb and Wet-bulb Thermometers
The values given in Columns $3,4,5,14$, and 15 are derived from eye-readings of self-registering thermometers.
The mean reading of the Barometer for the month was $29^{\text {in }} \cdot 702$, being $0^{\text {in }} \cdot 097$ lower than the average for the 65 years, $1841-1905$.
Temperature of the Air.
The highest in the month was $75^{\circ} \cdot 7$ on July 28 ; the lowest in the month was $47^{\circ} \cdot 4$ on July 24 ; and the range was $28^{\circ} \cdot 3$.
The mean of all the highest daily readings in the month was $67^{\circ} \circ$, being $7^{\circ} \cdot 2$ lower than the average for the 65 years, 1841 -1905.

The mean of the daily ranges was $15^{\circ} \div$, heing $5^{\circ} \cdot 8$ less than the average for the 65 years, $1841-1905$.
The mean for the month was $5^{\circ} \cdot 1$, being $4^{\circ} \cdot 6$ lower than the average for the 65 years, $1841-1905$.

The results apply to the civil day.
The mean reading of the Barometer (Column 2) and the mean temperatures of the Air and Evaporation (Columns 6 and 8) are deduced from the photographic records. The average temperature (Column 7) is deduced from the 65 years observations, $\times 841-1905$. The temperature of the Dew Point (Column 9) and the Degree of Humidity (Column 13) are deduced from the corresponding temperatures of the Air and Evaporation by means of Glaisher's Hygrometrical Tables. The mean difference between the Air and Dew Point Temperatures (Column ro) is the difference between the numbers in Columns 6 and 9 , and the Greatest and Least The mean difference between the Air and Dew Point Temperatures (Column 10) is the difference between the numbers in Colenm
Differences (Columns in and 12) are deduced from the 24 hourly photographic measures of the Dry-bulb and Wet-bulb Thermometers.
The values given in Columns 3, 4, 5, 14, and 15 are derived from eye-readings of self-registering thermometers.
The mean reading of the Barometer for the month was $29^{\text {in }} \cdot 730$, being $o^{\text {in }} \cdot{ }_{5}{ }_{53}$ lower than the average for the 65 years, 1841-1905.
Temperature of the Air.
The highest in the month was $77^{\circ} \cdot 4$ on August 12; the lowest in the month was $48^{\circ} .9$ on August 29 ; and the range was $28^{\circ} \cdot 5$.
The mean of all the highest daily readings in the month was $70^{\circ} \cdot 8$, being $1^{\circ} \cdot 9$ lower than the average for the 65 years, 1841-1905.
The mean of all the lowest daily readings in the month was $52^{\circ} \cdot 7$, being $0^{\circ} \cdot 3$ lower than the average for the 65 years, 1841-1905.
The mean of the daily ranges was $18^{\circ} \cdot 1$, being $1^{\circ} \cdot 6$ less than the average for the 65 years, $1841-1905$.
The mean for the month was $60^{\circ} \cdot 8$, being $0^{\circ} \cdot 9$ lower than the average for the 65 years, $1841-1905$.

The results apply to the civil day.
The mean reading of the Barometer (Column 2) and the mean temperatures of the Air and Evaporation (Columns 6 and 8) are deduced from the photographic records. The average temperature (Column 7) is deduced from the 65 years' observations, $1841-1905$. The temperature of the Dew Point (Column 9) and the Degree of Humidity (Column 13) are deduced from the corresponding temperatures of the Air and Evaporation by means of Glaisher's Hygrometrical Tables. The mean difference between the Air and Dew Point Temperatures (Column 10) is the difference between the numbers in Columns 6 and 9, and the Greatest and Least Differences (Columns in and i2) are deduced from the 24 hourly photographic measures of the Dry-bulb and Wet-bulb Thermometers.
The values given in Columns 3, 4, 5, 14, and 15 are derived from eye-readings of self-registering thernometers.

* Rainfall (Column 16). Amounts entered on September 9 and 26 are derived from dew.

The mean reading of the Barometer for the month was $30^{\text {in }} \cdot 036$, being $0^{\text {in }} \cdot 225$ higher than the average for the 65 years, $1841-1905$.
Temperature of the Air.
The highest in the month was $75^{\circ} \cdot \mathbf{2}$ on September 28 ; the lowest in the month was $39^{\circ} \cdot 1$ on September io; and the range was $36^{\circ} \cdot 1$.
The mean of all the highest daily readings in the month was $64^{\circ} \cdot 6$, being $2^{\circ} \cdot 7$ lower than the average for the 65 years, $1841-1905$
The mean of all the lowest daily readings in the month was $4^{\circ} .5$, being $0^{\circ} .6$ lower than the average for the 65 years, $184 \mathbf{1 - 1 9 0 5 .}$
The mean of the daily ranges was $16^{\circ} \cdot 1$, being $2^{\circ} 1$ less than the average for the 65 years, $1841 \mathbf{1 - 1 9 0 5}$.
The mean for the month was $6^{\circ}{ }^{\circ} \mathbf{2}$, being 1° I lower than the average for the 65 years, $1841-1905$.

The results apply to the civil day.
The mean reading of the Barometer (Column 2) and the mean temperatures of the Air and Evaporation (Columns 6 and 8) are deduced from the photographic records The average temperature (Column 7) is deduced from the 65 years' observations, 1841-1905. The temperature of the Dew Point (Column 9) and the Degree of Humidity (Column 13) are deduced from the corresponding temperatures of the Air and Evaporation by means of Glaisher's Hygrometrical Tables. The mean difference between the Air and Dew Point Temperatures (Column ro) is the difference between the numbers in Columns 6 and 9, and the Greatest and Least Differences (Columns in and 12) are deduced from the 24 hourly photographic measures of the Dry-bulb and Wet-bulb Thermometers.
The values given in Columns 3, 4, 5, 14, and 15 are derived from eye-readings of self-registering thermometers.

* Rainfall (Column 16). Amount entered on October 15 is derived from dew.

The mean reading of the Barometer for the month was $29^{\text {in }} \cdot 836$, being oin $\cdot 1{ }_{1} 5$ higher than the average for the 65 years, $1841-1905$.
Temperature of the Air.
The highest in the month was $73^{\circ} \cdot 2$ on October 2; the lowest in the month was $39^{\circ} .6$ on October 23 ; and the range was $33^{\circ} 6$.
The mean of all the highest daily readings in the month was $59^{\circ} \cdot 8$, being $2^{\circ} \cdot 3$ higher than the average for the 65 years, 1841-1905.
The mean of all the lowest daily readings in the month was $47^{\circ} 6$, being $4^{\circ}{ }^{\circ} 4$ higher than the average for the 65 years, 1841-1905.
The mean of the daily ranges was $12^{\circ} \cdot 2$, being $2^{\circ} \cdot 1$ less than the average for the 65 years, 1841-1905.
The mean for the month was $53^{\circ} 4$, being $3^{\circ} 4$ higher than the average for the 65 years, $1841-1905$.

The results apply to the civil day.
The mean reading of the Barometer (Column 2) and the mean temperatures of the Air and Evaporation (Columns 6 and 8) are deduced from the photographic records. The average temperature (Column 7) is deduced from the 65 years' observations, 1841-1905. The temperature of the Dew Point (Column 9) and the Degree of Humidity (Column 13) are deduced from the corresponding temperatures of the Air and Evaporation by means of Glaisher's Hygrometrical Tables. Degree of Humidity (Column 13) are deduced from the corresponding temperatures of the ere between the numbers in Columns 6 and 9 , and the Greatest and Least Differences (Columns in and 12) are deduced from the 24 hourly photographic measures of the Dry-bulb and Wet-bulb Thermometers.
The values given in Columns 3, 4, 5, 14, and 15 are derived from eye-readings of self-registering thermometers.

* Rainfall (Column 16). Amounts entered on November 4, 5, 17, 21, and 29 are derived from fog and frost.

The mean reading of the Barometer for the month was $29^{\text {in }} 466$, being $0^{\text {in }} \cdot 292$ lower than the average for the 65 years, 1841-1905.
Temperature of the Air.
The highest in the month was $54^{\circ} 9$ on November 1 ; the lowest in the month was $22^{\circ} \cdot 3$ on November 23 : and the range was $3^{\circ} \cdot 6$.
The mean of all the highest daily readings in the month was $45^{\circ} \cdot 4$, being $3^{\circ} 6$ lower than the average for the 65 years, $18+1-1905$.
The mean of all the lowest daily readings in the month was $3^{\circ}{ }^{\circ} 4$, being $5^{\circ} \cdot 5$ lower than the average for the 65 years, $\mathbf{1 8 4 1 - 1 9 0 5 .}$
The mean of the daily ranges was $1_{3}{ }^{\circ} \circ$, being $1^{\circ} \cdot 9$ greater than the average for the 65 years, $1841-1905$.
The mean for the month was $3^{8^{\circ} \cdot 9}$, being $4^{\circ} .6$ lower than the average for the 65 years, $1841-1905$

The mean Temperature of the Dew Point for the month was $34^{\circ} 4$, being $5^{\circ} .6$ lower than
The mean Degree of Humidity for the month was $84^{\circ} 6$, being $2 \cdot 7$ less than
The mean Elastic Force of Vapour for the month was oin $\cdot 199$, being oin $\cdot 048$ less than
The mean Weight of Vapour in a Cubic Foot of Air for the month was $\mathbf{2 g r s} \cdot 3$, being ogr 5 less than
The mean Weight of a Cubic Foot of Air for the month was 54^{8} grains, being the same as
The mean amount of Cloud for the month (a clear sky being represented by o, and an overcast sky by io) was 6.5 .
The mean proportion of Sunshine for the month (constant sunshine being represented by 1) was $0 \cdot 189$. The maximum daily amount of Sunshine was $; 7$ hours on November 10 .
The highest reading of the Solar Radiation Thermometer was $85^{\circ} \cdot 8$ on November 8 ; aud the lowest reading of the Terrestrial Radiation Thermometer was $16^{\circ} \cdot 9$ on November 17 . The mean daily distribution of Ozone for the 12 hours ending 9^{h} was $1 \circ 0$; for the 6 hours ending $15^{\text {h }}$ was $0^{\circ} 1$; and for the 6 hours ending 21^{h} was 0.4 .
The Proportions of Wind referred to the cardinal points were N. 6, E. 3, S. 6, and W. 13. Two days were calm.
The Greatest Pressure of the Wind in the month was $\mathbf{1}^{\circ}{ }^{\circ} \mathrm{lbs}$. on the square foot on November \mathbf{x} and 1 m . The mean daily Horizontal Movement of the Air for the month was 325 miles; the greatest daily value was 664 miles on November 7; and the least daily value was 120 miles on November 26.
$\boldsymbol{R a i n}$ (oin $\cdot 005$ or over) fell on 17 days in the month, amounting to $3^{\text {in }} \cdot 56$, as measured by gauge No. 6 partly sunk below the ground; being $\mathbf{r}^{\text {in }} 349$ greater than the average fall for the 65 years, $1841-1905$.

The results apply to the civil day.
The mean reading of the Barometer (Column 2) and the mean temperatures of the Air and Evaporation (Columns 6 and 8) are deduced from the photographic records. The average temperature (Column 7) is deduced from the 65 years' observations, $1841-1905$. The temperature of the Dew Point (Column 9) and the Degree of Humidity (Column 13) are dednced from the corresponding temperatures of the Air and Evaporation by means of Glaisher's Hygrometrical Tables. Degree of Humidity (Column 13) are dednced from the corresponding temperatures of the Air and Evaporation by means of Glaisher's Hygrometrical The mean difference between the Air and Dew Point Temperatures (Column io) is the difference between the numbers in Colum
Differences (Columns in and 12) are deduced from the 24 hourly photographic measures of the Dry-bulb and Wet-bulb Thermoneters.
The values given in Columns 3, 4, 5, 14, and 15 are derived from eye-readings of self-registering thermometers.

* Rainfall (Column 16). Amounts entered on December 28, 29, and 31 are derived from dew and fog.
$\dagger 0^{\text {in }} \cdot 008$ of this amount is derived from frost and fog.
The mean reading of the Barometer for the month was $29^{\text {in }} \cdot 537$, being $0^{\text {in }} \cdot 248$ lower than the average for the 65 years, 1841-1905.
Temperature of the Air.
The highest in the month was $55^{\circ} \circ$ on December 16 ; the lowest in the month was $27^{\circ} 11$ on December 28 ; and the range was $27^{\circ} 9$.
The mean of all the highest daily readings in the month was $48^{\circ} \cdot 3$, being $4^{\circ} \cdot 1$ higher than the average for the 65 years, $1841-1905$.
The mean of all the lowest daily readings in the month was $40^{\circ} \circ$, being $5^{\circ} \circ$ higher than the average for the 65 years, $1841-1905^{\circ}$.
The mean of the daily ranges was $8^{\circ} 4$, being $0^{\circ} .8$ less than the average for the 65 years, $1841-1905$.
The mean for the month was $44^{\circ} \cdot 6$, being $4^{\circ} \cdot 7$ higher than the average for the 65 years, 1841-1905.

The mean Temperature of Evaporation for the month was $43^{\circ} \circ$, being $4^{\circ} \cdot 5$ higher than
The mean T'emperature of the Dew Point for the month was $41^{\circ} \circ$, being $4^{\circ} 3_{3}$ higher than
The mean Degree of Humidity for the month was $87^{\circ} 7$, being 0.9 less than
The mean Elastic Force of Vapour for the month was oin $\cdot 257$, being oin $\cdot 039$ greater than
The mean Weight of Vapour in a Cubic Foot of Air for the month was 2 grs 9 , being ${ }^{\circ} \mathrm{gr} \cdot 3$ greater than
The mean Weight of a Cubic Foot of Air for the month was 54^{2} grains, being 10 grains less than
The mean amount of Cloud for the month (a clear sky being represented by o, and an overcast sky by 10) was $7 * 9$.
The mean proportion of Sunshine for the month (constant sunshine being represented by i) was 0.08 I . The maximum daily amount of Sunshine was 3.9 hours on December 22.
The highest reading of the Solar Radiation Thermometer was $71^{\circ} 9$ on December 4; and the lowest reading of the Terrestrial Radiation Thermometer was $20^{\circ} \circ$ on December 28 .
The mean daily distribution of Ozone for the 12 hours ending 9^{h} was 2.9 ; for the 6 hours ending 15^{h} was 1.2 ; and for the 6 hours ending 21^{h} was 0.8 .
The Proportions of Wind referred to the cardinal points were N. 4, E. 5, S. 10, and W. 12.
The Greatest Pressure of the Wind in the month was $30^{\circ} 5 \mathrm{lbs}$. on the square foot on December 16. The mean daily Horizontal Movement of the Air for the month was 392 miles; the greatest daily value was 820 miles on December 16 ; and the least daily value was 196 miles on December 22 .
Rain (oin 005 or more) fell on 19 days in the month, amounting to $3^{\text {in }} \cdot 544$, as measured by gauge No. 6 partly sunk below the ground; being $\mathrm{I}^{\text {in }} \cdot 717$ greater than the average fall for the 65 years, 1841-1905.

Highest and Lowest Readings of the Barometer, reduced to 32° Fahrenheit, as extracted from the Photographic Records.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{maxima.} \& \multicolumn{2}{|l|}{minima.} \& \multicolumn{2}{|l|}{maxima.} \& \multicolumn{2}{|l|}{minima.} \& \multicolumn{2}{|l|}{maxima.} \& \multicolumn{2}{|l|}{minima.} \\
\hline Greenwich Civil Time, 19 ro. \& Reading. \& Greenwich Civil Time, 19 ro. \& Reading. \& Greenwich Civil Time, rgio. \& Reading. \& Greenwich Civil Time, rgio. \& Reading. \& Greenwich Civil lime, 1910 \& Readiug. \& Greenwich Civil Time, 19 Iq . \& Reading. \\
\hline January \& \& January \& \& May \& \& May \& \& September \& \& September \& \\
\hline h m \& in. \& \({ }^{\text {h }}\) \& in. \& h m \& in. \& d h m \& in. \& d b m \& in. \& d h m \& in. \\
\hline 1. 7. 35 \& 30.215 \& 2. 5. 0 \& 30.109 \& I. 10. 20 \& \(30 \cdot 165\) \& 2. 15. 30 \& 29.878 \& 1. 11. \& \(30 \cdot 129\) \& 3. 2. \& 29.970 \\
\hline 4. 10. 20 \& \(30 \cdot 316\) \& 5. 7. 0 \& \(30 \cdot 242\) \& 3. 6. 30 \& 29.998 \& 5. 15.10 \& 29.390 \& 10. 0. 30 \& 30.126 \& 14. 14. 0 \& 29.834 \\
\hline 7. 10. 40 \& 30.424 \& 10. 0. 0 \& 29.749 \& 5. 20. 20 \& 29.489 \& 6. 4. 5 \& 29.257 \& 17. 10. 30 \& \(30 \cdot 311\) \& 19. 13. 20 \& 29.846 \\
\hline 10. 17. 10 \& 29.956 \& 11. 9. 5 \& 29.643 \& II. 4. O \& 30.021 \& 12. 7.0 \& 29.412 \& 22. 9. 10 \& 30.272 \& 26. 12. 55 \& 29.823 \\
\hline 11. 13. 55 \& 29.726 \& 12. 9. 0 \& 29.389 \& 12. 19. 45 \& 29.531 \& 13. 4. 0 \& 29.443 \& 27. 10. \& 30.024 \& 29. 6. 20 \& 29.689 \\
\hline 13.15. 55 \& 30.058 \& 14. 8. 20 \& 29.843 \& 14. 240 \& 29.796 \& 15.16. 10 \& 29.515 \& \& \& \& \\
\hline 15.11. \({ }^{16}\) \& 30.130 \& 16. 15.20 \& 29.620 \& 16.23. 0 \& 29.672 \& 19.15.40 \& 29.448 \& October \& \& October \& \\
\hline 16. 23. 10 \& 29.701 \& 17. 12. 30 \& 29.502 \& 20. 1. 30 \& 29.548 \& 20. 2. 25 \& 29.413 \& I. I. 20 \& \& \& \\
\hline 17. 18.55 \& 29.605 \& 18. 21.0 \& 29.165 \& 21. 10. 50 \& 29.777 \& 21. 12. 35 \& 29.692 \& 4. II. 5 \& \& 8. 16. 25 \& \\
\hline 22. 23.30
27. 13.55 \& 29.925
29.281 \& \(\begin{array}{llll}\text { 24. } \\ \text { 28. } \& \text { 7. } \& \text { 8. } \& \circ\end{array}\) \& 28.487
28.615 \& 25.22. 20 \& 30.119 \& 31. 15.10 \& 29.329 \& 4. 11. \({ }^{\text {9. } 21 .} 0\) \& 30.358
29.84 \& \begin{tabular}{|cr|r}
8. \& 16.25 \\
12. \& 3.15
\end{tabular} \& 29.763
29.331
29 \\
\hline 27. 13. 55
28. 13.35 \& 29.281
28.691 \& 28.
28. 21.
21. \& 28.615
28.615 \& \& \& \& \& 14. 10. 20 \& 30.267 \& 15.10. 25 \& 29.984 \\
\hline \[
\begin{aligned}
\& \text { 28. 13. } 35 \\
\& 30 . \\
\& \text { 22. }
\end{aligned}
\] \& \[
\begin{aligned}
\& 28 \cdot 691 \\
\& 29 \cdot 826
\end{aligned}
\] \& 28. 21.0 \& 28.615 \& June \& \& June \& \& 15. 21. 50 \& \(30 \cdot 111\) \& 17.6. 6 \& 29.780 \\
\hline \& \& February \& \& 3. 9. 40 \& \({ }^{29} 7374\) \& 4. 17. \(\square^{\circ}\) \& \(29 \cdot 46\) \& 18. 9.45 \& 29.914 \& 20. 6. ○ \& 29.426 \\
\hline February \& \& 3. 6 \& 29.081 \& 7. 20.40
15.21 .20 \& 29.881
\(30 \cdot 210\) \& 10. 18.10
17.
17.
17 \& 29.543 \& 22. 22. 10
26. 10. 25 \& 29.825
29.960 \& 24.
28.
28.
6. \& \(29 \cdot 642\)
29.528 \\
\hline 5. 7. 50 \& 29.886 \& 8. 4. 15 \& 29.224 \& 18. 9. 0 \& 30.194 \& 25.19.40 \& 29.974 \& 30. 22.0 \& 29.767 \& \& 29.528 \\
\hline 9.21. 55 \& \(30 \cdot 222\) \& 11. 16. 0 \& \(29 \cdot 768\) \& 27. 14. 25 \& 29.557 \& 28.6. 25 \& 29.402 \& \& \& November \& \\
\hline 12. 21.55 \& 29.972 \& 15. 6. 15 \& 28.818 \& 29. 11. 30 \& 29.518 \& 30. 5.10 \& 29.350 \& November \& \& 1. 14. 0 \& 28.880 \\
\hline 16. 18. 10 \& 29.461
29.381 \& 17. 8. 55 \& 29.221
20.226 \& \& \& \& \& \& \& \& 28.745 \\
\hline 17. 20.25
18.
18. 21. \& 29.381
29.370 \& 18.4 .45
19.18 .15
1. 12. \& 29.226
28.936 \& July \& \& July \& \& 2. 16. \({ }^{\text {5. } 21.30}\) \& 29.193
29.316 \& 7.11. 30 \& 28.660 \\
\hline 18. 21.
20. 8.
25 \& 29370
29.227 \& 19. 18. 15
20. 20.45 \& 28.936
28.853 \& 11. 10 \& 29.548 \& 2. 18. 30 \& 29.421 \& 10. 9. 10 \& 29.978 \& 11. 8. 35 \& 29.263 \\
\hline 23.21. 5 \& 29.767 \& 24. 10. 40 \& 29.298 \& 5. 7. 25 \& 29.933
29.920 \& 6. 10.20
10.18 .0 \& \[
\begin{aligned}
\& 29445 \\
\& 29 \cdot 401
\end{aligned}
\] \& \[
\begin{array}{llr}
\text { 12. } 10 . \& 0 \\
16 . \& 21 . \& 10
\end{array}
\] \& 29.878
29.589 \& \(\begin{array}{ccc}14 . \& 5 . \& \circ \\ 17 . \& 16 . \& 30\end{array}\) \& 28.763 \\
\hline 24. 21.0 \& 29.541 \& 25.13. 25 \& 29.129 \& \(\begin{array}{r}\text { 8. 22. } \\ \text { 13. } 11.15 \\ \hline 15\end{array}\) \& 29.920
30.039 \& \(\begin{array}{lll}\text { 10. } 18.80 \\ 17 . \& 10.40\end{array}\) \& 29.801
29.573 \& 16. 21. 10
19. 20.15 \& 29.589
29.992 \& 17. 16.
20. 14.30

14. \&

\hline 25. 20.25
15. 22.45 \& 29.475
29.756 \& 26.13.
16. 15. 25 \& 29.004
29.489 \& $\begin{array}{llll}\text { 13. } & 11 . & 15 \\ 19 . & 8 . & 0\end{array}$ \& 30.39
29.868 \& $\begin{array}{llll}17 . & 10 . & 40 \\ 21 . & 7 . & 0\end{array}$ \& 29.573
29459 \& 19.20. 15
1. 22. \& 29.992
29.957 \& 20. 14. 35
1. 16.25 \& 29.798
29.767

\hline 27. 22. 45 \& 29.756 \& 28. 15.25 \& 29.489 \& 19.8.8. 25 \& 29.868
29 \& 22.19.10 \& 29.459
29441 \& $\begin{array}{ll}\text { 2. } 22 . & 2 . \\ 24 . & 9 . \\ \\ \end{array}$ \& 29.957
29.897 \& 25.15. 0 \& 29.787
29

\hline \& \& ch \& \& 24. 3. 0 \& 29.862 \& 25.10. \& 29.283 \& 26. 10. 30 \& 29.816 \& 28. 2. 50 \& 29.055

\hline 3. 10. 10 \& 30*073 \& 5. 4. 10 \& 29.752 \& $\begin{array}{llll}27 . & 9 . & 20 \\ 30 & 6 . & 55\end{array}$ \& 29.846
29.687 \& $\begin{array}{ll}\text { 29. } & 3 . \\ 31 . & 30 \\ 3 . & 20\end{array}$ \& 29.409
29.556 \& 10. \& 29.709 \& Decembe \&

\hline 7. 21. 45 \& 30.003 \& 9. 20. 15 \& 29.490 \& \& \& \& \& cm \& \& \&

\hline 16. 9.10 \& 30.054 \& 17. 5. 10 \& 29.677 \& August \& \& Augus \& \& 2. 21. 0 \& 29.852 \& 5. 7. 0 \& 29.049

\hline 17. 14. 45 \& 29.751
30.343 \& 18.
2. 17.25
3. \& 29.548
30.027 \& I. 7. 5° \& 29.729 \& 2. 4. 0 \& 29.513 \& 5. 23. 50 \& 29.229 \& 6. 13. 10 \& 29.098

\hline $\begin{array}{llll}\text { 24. } & 9 . & 20 \\ \text { 29. 10. }\end{array}$ \& 30.343 \& 27. 17. 20 \& $30 \cdot 027$
$30 \cdot 200$ \& 3. 7.50 \& 29.626 \& 4. 17. 30 \& $29 \cdot 479$ \& 7. 9. 4° \& 29.422 \& 8. 20. 35 \& 28.894

\hline $\begin{array}{ll}\text { 29. 10. } & 40 \\ 31.11 . & 0\end{array}$ \& $30 \cdot 417$
$30 \cdot 368$ \& 30. 14. 40 \& 30.200 \& 6. 23.40 \& 29.830 \& 8. 18. 20 \& 29.686 \& 9. 8. 45 \& 28.979 \& 10. 13. 10 \& 28.783

\hline 31. 11. 0 \& 30'368 \& \& \& 11. 10. 5 \& 29.983 \& 12. 16. \& 29.771 \& 12. 9. 30 \& 29^{-240} \& 12. 16. \bigcirc \& 29.089

\hline April \& \& \& \& $\begin{array}{llll}\text { 13. } 22 . & 0 \\ 16 . & 22 . & \\ \\ 18 . & \end{array}$ \& 29.945 \& 15. 5.40 \& 29.544
29 \& 13. I. 45 \& 29.234
29 \& 13. 9. 55 \& 29.103

\hline 8. 10. 30 \& \& 4. 15.45 \& 29.412 \& 16. 22. 35 \& 29.938
29.874 \& 17. 18. 35 \& $29 \cdot 789$
29 \& 14. 10. 15 \& 29.399 \& $\begin{array}{llll}15 . & 7.10 \\ 16 & 10\end{array}$ \& 28.956

\hline 10. 10. 15 \& 29.937 \& 13. 21. 50 \& 28.92 \& 20. 9. 20 \& 29.8 \& 19. 6. \& 29.543 \& 15.22. \& 29.449 \& 16. 19. \& 28.935

\hline 20. 9. 30 \& 30'100 \& 22. 13.25 \& 29.782 \& 22. 22. \& 29.842 \& 24. 7.30 \& 29.578 \& 22. 21. ${ }^{\text {a }}$ \& $30 \cdot 162$ \& 26. 23.15 \& 29.225

\hline 22. 23. \circ \& 29.949 \& 24. 16. 45 \& 29.130 \& 25. 9. 45 \& 29.785 \& 26. 11. 15 \& 29437 \& 28.10. 10 \& $30 \cdot 101$ \& 29. 5. 30 \& 29.985

\hline 27. 9. 10 \& 29.900 \& 28.16. 30 \& 29.573 \& 27. 21. 0 \& 29.737 \& 28.22. 0 \& 29.300 \& 31. 10. \& $30 \cdot 320$ \& \&

\hline
\end{tabular}

The readings in the above table are accurate, but the times are occasionally liable to uncertainty, as the barometer will sometimes remain at its extreme reading withont sensible change for a considerable interval of time. In such cases the time given is the middle of the stationary period.
The time is expressed in civil reckoning, commencing at midnight and counting from o ${ }^{\mathrm{h}}$ to 24^{h}.
The height of the barometer cistern above mean sea level is 159 feet : no correction has been applied to the readings to reduce to sea level.

Highest and Lowest Readings of the Barometer in each Month for the Year igio.

	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.
	in.											
Highest.......	30.424	30.222	30.417	30.323	30.165	30.210	30.039	30.103	30.311	30.358	29.992	30.320
Lowest........	28.487	$28 \cdot 818$	$29^{\circ} 490$	28.923	29.257	29.274	29.283	29.300	29.689	29.184	28.660	$28 \cdot 783$
Range	I 937	1.404	0.927	1.400	0.908	0.936	$0 \cdot 756$	0.803	0.622	I'174	I•332	1.537

The highest reading in the year was $30^{\mathrm{in} .} 424$ on January 7 .
The lowest reading in the year was $28^{\text {in }} 487$ on January 24 .
The range of reading in the year was $1^{\text {in. }} 937$.

Monthly Results of Meteorological Elements for the Year igio.

The greatest recorded pressure of the wind on the square foot in the year was $30 \% \mathrm{lls}$. on February 20 .
The greatest recorded daily horizontal movement of the air in the year was 820 miles on December 16.
'The least recorded daily horizontal movement of the air in the year was 79 miles on January 6 .

Monthly Mean Reading of the Barometer at every Hour of the Day, as deduced from the Photographic Records.

$\underset{\substack{\text { Hour } \\ \text { Green } \\ \text { Civil Time. }}}{\substack{\text { Gime }}}$	1910.												($\begin{gathered}\text { Yearly } \\ \text { Means. }\end{gathered}$
	January.	February.	March.	April.	May.	June.	July.	August.	September.	October	November.	December.	
Midnight	$\begin{gathered} \text { in. } \\ 29.696 \end{gathered}$	$29 \cdot 518$	29.972	${ }_{29^{2} \cdot 6}^{2 \cdot 63}$	${ }_{29.725}^{\text {in. }}$	${ }_{29^{\prime \prime} .718}$	$\underbrace{}_{29.710}$	$\operatorname{in.}_{29^{7} 734}$	$\frac{\text { in. }}{30 \circ} 8$	$\stackrel{{ }_{29} 9^{\circ} \cdot 846}{ }$	${ }_{29} \mathrm{in} .464$	$\stackrel{\text { in. }}{29}$	29.720
$\mathbf{1}^{\text {h }}$	29.693	29.508	29.972	29.671	29.721	29.718	29.704	29.729	30.045	29.844	29.46ı	29.535	29.717
2	29.692	29.499	29.969	29.666	29.712	29.712	29.699	29.727	30.040	29.838	29.458	29.536	29.712
3	29.689	$29 \cdot 487$	29.963	29.662	29.703	29.706	29.691	29.724	30.034	29.831	29.458	29.535	29.707
4	29.684	29.477	29.959	29.659	29.700	29.705	29.688	29.718	30.031	29.830	29.458	29.530	29.703
5	29.676	29.475	29.963	29.660	29.703	29.706	29.689	29.719	30.032	29.830	29.461	29.524	29.703
6	29.674	29.473	29.969	29.667	29.707	29.710	29.691	29.723	$30 \cdot 035$	29.832	29.462	29.521	29.705
7	29.674	29.474	29.976	29.672	29.710	29.712	29.696	29.726	$30 \cdot 040$	29.838	29.469	29.523	29.709
8	29.680	29.477	29.984	29.675	29.712	29.714	29.700	29.732	$30 \cdot 044$	29.847	29.477	29.529	29.714
9	29.685	29.481	29.989	29.677	29.714	29.717	29.702	29.735	$30 \cdot 047$	29.851	29.479	29.534	29.718
10	29.694	29.485	29.995	29.677	29.711	29.718	29.704	29.738	$30 \cdot 047$	29.854	29.480	29.542	29.720
11	29.696	29.485	29.995	29.674	29.708	29.717	29.706	29.735	30.044	29.853	29.476	29.539	29.719
Noon	29.689	29.483	29.991	29.666	29.704	29.715	29706	29.731	$30 \cdot 039$	29.844	29.468	29.532	29.714
$13^{\text {h }}$	29.680	29.474	29.982	29.660	29.701	29.712	29.705	29.730	$30 \cdot 032$	29.839	29.460	29.526	29.708
14	29.674	29.469	29.975	29.652	29.698	29.708	29.703	29.727	30.027	29.833	29.454	29.525	29.704
15	29.674	29.471	29.970	29.645	29.694	29.704	29.700	29.724	30.021	29.827	29.456	29.530	${ }^{29} 701$
16	29.675	29.476	29.967	29.638	29.692	29.700	29.696	29.721	$30 \cdot 18$	29.824	29.457	29.534	29.700
17	${ }^{29} 9678$	29.489	${ }^{29} 9.969$	29.642	29.689	29.697	29.694	29.720	$30 \cdot 020$	29.826	${ }^{29} 946$	29.538	${ }^{29} 7{ }^{2} 702$
18	29.677	29.505	${ }^{29} 979$	29.646	29.692	29.699	29.695	29.723	$30 \cdot 022$	29.830	29.465	29.542	29.706
19	29.678	29.512	29.983	29.652	29.699	29.705	29.699	${ }^{29} 7731$	$30 \cdot 030$	29.830	29.466	29.547	29.711
20	29.677	29.516	29.989	29.662	29.706	29.711	29.706	29.739	$30 \cdot 040$	29.829	29.468	29.552	29.716
21	${ }^{29} 9678$	29.518	29.993	29.667	29.713	29.723	29.716	29.748	$30 \cdot 045$	29.831	$29^{\prime} 473$	29.555	$29^{\prime} 722$
23	29.680	29.520	29.995	29.668	29.713	29.725	29.720	${ }^{29} 9748$	$30 \cdot 047$	29.829	29.476	29.555	$29^{\prime} 723$
23 24	29.684	29.518	29.994	29.669	29.710	29.723	29.719	29.750	$30 \cdot 0+7$	29.825	29.477	29.557	29.723
24	29.685	29.514	29.993	29.666	29.704	29.719	29.716	29.747	30.045	29.820	29.479	29.556	29.720
$\stackrel{\square}{\text { and }}$	29.682	29.491	29.979	29.662	29.706	29.711	29.702	29.730	30.036	29.836	29.466	29.537	29712
$\underset{\sim}{m} \quad 1^{\text {h }} .-24^{\text {h }}$.	29.682	29.491	29.980	29.662	29.705	29.711	29.702	29.731	30.036	29.835	29.467	29.537	29.712
$\underbrace{}_{\substack{\text { Number or o Days } \\ \text { employedil }}}\}$	31	28	31	30	31	30	31	31	30	31	30	31	

Monthly Mean Temperature of the Air at every Hour of the Day, as deduced from the Photographic Records.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{$$
\begin{aligned}
& \text { Hourv, } \begin{array}{c}
\text { Hoenver } \\
\text { Civi Time. }
\end{array}
\end{aligned}
$$} \& \multicolumn{12}{|c|}{1910.} \& \multirow[t]{2}{*}{$\underset{\substack{\text { Yearly } \\ \text { Meaus. }}}{\text { a }}$}

\hline \& January. \& Felruary. \& March. \& April. \& May. \& June. \& July. \& August. \& September. \& October. \& November. \& December. \&

\hline Midnight \& $39^{\circ} 4$ \& $40^{\circ} \mathrm{O}$ \& $39^{\circ} 7$ \& $43 \cdot 1$ \& $48{ }^{\circ} \cdot 5$ \& $55^{\circ} 6$ \& $54^{\circ} 6$ \& $56 \cdot 7$ \& 529 \& 51.8 \& 37.8 \& $43^{\circ} \cdot 8$ \& $47^{\circ} \mathrm{O}$

\hline $\mathrm{I}^{\text {h }}$ \& 39^{-2} \& 399 \& 39.4 \& $42 \cdot 6$ \& $48 \cdot 3$ \& 55.0 \& 54.3 \& 56.2 \& $52 \cdot 7$ \& 51.8 \& 37.9 \& $43 \cdot 4$ \& 46.7

\hline 2 \& 39.2 \& $39^{\circ} 9$ \& $39 \cdot 1$ \& $42 \cdot 1$ \& 47^{-8} \& 54.2 \& $54^{\circ} 2$ \& $55^{\circ} 9$ \& $52 \cdot 3$ \& 51.4 \& 377 \& $43^{\prime 2}$ \& $46 \cdot 4$

\hline 3 \& 38.9 \& 40° \& $38 \cdot 9$ \& $4{ }^{1} 9$ \& $47 \cdot 7$ \& 53.9 \& $54^{\circ} \mathrm{O}$ \& 55.7 \& 52.0 \& 51.2 \& $37 \cdot 5$ \& $43^{\text {I }}$ \& $46 \cdot 2$

\hline 4 \& $38 \cdot 6$ \& $40 \cdot 2$ \& $38 \cdot 7$ \& 41.7 \& $47 \cdot 4$ \& 53.5 \& 53.7 \& 55.6 \& $51 \cdot 9$ \& $50 \cdot 9$ \& 37.2 \& $43^{\circ} 2$ \& $46 \cdot 1$

\hline 5 \& 38.4 \& $40 \cdot 2$ \& 38.4 \& 41.6 \& $47 \cdot 5$ \& 53.9 \& 53.7 \& 55° \& 51.6 \& $51^{\circ} \mathrm{O}$ \& 36.9 \& $43 \cdot 3$ \& $4{ }^{6} 0$

\hline 6 \& $38 \cdot 3$ \& 40.4 \& 38.4 \& $41^{\circ} 9$ \& $48 \cdot 2$ \& 55.2 \& 54.4 \& 56.2 \& 51.5 \& $50 \cdot 8$ \& $36 \cdot 3$ \& 43.4 \& $46 \cdot 3$

\hline 7 \& $38 \cdot 5$ \& $40 \cdot 5$ \& 38.6 \& $43 \cdot 5$ \& $49 \cdot 8$ \& 57° \& 55.5 \& 57.9 \& 52.4 \& 51.1 \& $36 \cdot 1$ \& 43.4 \& 47°

\hline 8 \& 38.7 \& 40.9 \& 39.9 \& 45.4 \& 52.0 \& 59.3 \& $57 \cdot 1$ \& $60 \cdot 3$ \& 54% \& 519 \& $36 \cdot 3$ \& $43 \cdot 6$ \& $48 \cdot 3$

\hline 9 \& $39^{\circ} 2$ \& $42 \cdot 0$ \& $42 \cdot 1$ \& $47 \cdot 5$ \& 53.8 \& ${ }^{61} 5$ \& 58.7 \& 62.3 \& $57^{\circ} \mathrm{O}$ \& 53.1 \& 37.4 \& $44^{\circ} \mathrm{O}$ \& 49.9

\hline 10 \& 39.9 \& 43^{1} \& 44° \& $48 \cdot 9$ \& 55.5 \& 63.4 \& 59.7 \& 64.5 \& 58.7 \& 54.6 \& 38.9 \& 44.7 \& 513

\hline 11 \& $41^{\circ} \circ$ \& $44^{\circ} 2$ \& $46 \cdot 5$ \& 49.9 \& 57.1 \& 64.9 \& ${ }^{60 \cdot 4}$ \& 653 \& $60 \cdot 4$ \& 56.3 \& $40 \cdot 5$ \& $45 \cdot 7$ \& 52.7

\hline Noon \& 41.9 \& $45^{\circ} 3$ \& $48 \cdot 2$ \& 51.0 \& 58.2 \& $65 \cdot 8$ \& 61.2 \& $65^{\circ} 9$ \& $61 \cdot 2$ \& $57 \cdot 4$ \& 41.6 \& $46 \cdot 3$ \& 53.7

\hline $13^{\text {b }}$ \& 42.3 \& $46 \cdot$ \& $49 \cdot 3$ \& 51.6 \& 59.0 \& 66.5 \& 62.2 \& $66 \cdot 8$ \& $62 \cdot 2$ \& 57.5 \& $42 \cdot 2$ \& $46 \cdot 9$ \& 54.4

\hline 14 \& $42 \cdot 3$ \& $45^{\circ} 9$ \& 49.4 \& 52.4 \& 59.6 \& 67.3 \& 63.3 \& 67.2 \& $62 \cdot 3$ \& 57.4 \& 42.4 \& $46 \cdot 7$ \& 54.7

\hline 15 \& 42.0 \& $45^{\circ} 6$ \& 49° \& $52 \cdot 1$ \& 59.5 \& $66 \cdot 5$ \& $63 \cdot 6$ \& 66.7 \& $62 \cdot 2$ \& 56.7 \& $42 \cdot 3$ \& $46 \cdot 5$ \& 54.4

\hline 16 \& $41 \cdot 3$ \& $44^{7} 7$ \& $48 \cdot 3$ \& 51.4 \& 59.0 \& $66 \cdot 6$ \& 63.3 \& 66.0 \& 61.4 \& 55.9 \& 41.4 \& $45^{\circ} 9$ \& 53.8

\hline 17 \& $40^{\circ} 9$ \& $43 \cdot 5$ \& 47° \& $49 \cdot 9$ \& 57.8 \& $65 \cdot 7$ \& $62 \cdot 5$ \& 64.9 \& 59.9 \& 54.7 \& 40^{6} \& $45 \cdot 7$ \& 52.8

\hline 18 \& $40 \cdot 4$ \& $42 \cdot 6$ \& 4.53 \& $48 \cdot 3$ \& $56 \cdot 5$ \& 64° \& 61.5 \& 63.4 \& 58.2 \& 53.9 \& 39.9 \& 45.4 \& 51.6

\hline 19 \& $40 \cdot 2$ \& $41^{\circ} 5$ \& $43 \cdot 8$ \& 47° \& 54.5 \& 61.8 \& 59.9 \& 61×7 \& $56 \cdot 5$ \& 53.0 \& $39 \cdot 3$ \& 45° \& 504

\hline 20 \& $40 \cdot 0$ \& $41^{\circ} \mathrm{O}$ \& $42 \cdot 5$ \& 45.9 \& $52 \cdot 5$ \& 59.8 \& 58.0 \& 59.9 \& $55^{\circ} \mathrm{2}$ \& 52.5 \& 38.5 \& 44.8 \& 49.2

\hline 21 \& 39.8 \& $40^{\circ} 4$ \& 413 \& 44.9 \& 51.1 \& 58.1 \& 56.7 \& $58 \cdot 7$ \& 543 \& $52 \cdot 1$ \& 38.1 \& 44.5 \& $48 \cdot 3$

\hline 22 \& 39^{6} \& $40 \cdot 0$ \& $40 \cdot 7$ \& $44 \cdot 6$ \& 50.2 \& 57° \& $55^{\circ} 9$ \& 57.9 \& 53.7 \& 51.8 \& $37 \cdot 8$

37.8 \& 44.5 \& $47 \cdot 8$

\hline 23 \& 39.3 \& 40° \& $40 \cdot 1$ \& $44^{\circ} \mathrm{F}$ \& 49.3 \& $56 \cdot 2$ \& $55^{\circ} \mathrm{C}$ \& 57.2 \& 53.2 \& ${ }_{51} 1.8$ \& $37 \cdot 8$
37 \& $44^{\text {P }}$. \& 47.4

\hline 24 \& 39^{3} \& 40° \& 39.7 \& $43 \cdot 5$ \& $48 \cdot 7$ \& $55 \cdot 6$ \& 54.7 \& $56 \cdot 7$ \& 527 \& 517 \& $37 \cdot 6$ \& $43 \cdot 8$ \& 47°

\hline ${ }^{0} 0^{\text {h }} .-23^{\mathrm{h}}$. \& $40^{\circ} 0$ \& $4^{2} \cdot$ \& $42^{\circ} 9$ \& $46 \cdot 4$ \& 53° \& $60 \cdot 1$ \& 58.1 \& $60 \cdot 8$ \& $56 \cdot 2$ \& 53.4 \& 38.8 \& 44^{6} \& 497

\hline $\sum \quad 1^{\mathrm{h}} \cdots 24^{\mathrm{h}}$. \& $40 \cdot 0$ \& 4^{2} - \& $42^{\circ} 9$ \& $46 \cdot 4$ \& 530 \& $60 \cdot 1$ \& 58.1 \& $60 \cdot 8$ \& $56 \cdot 2$ \& 53.4 \& 38.8 \& 44^{6} \& 49.7

\hline $\underbrace{\substack{\text { emploged. }}}_{\text {Number of Days }}$ \& 31 \& 28 \& 31 \& 30 \& 31 \& 29 \& 31 \& 31 \& 30 \& 31 \& 30 \& 31 \& ...

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Hour, } \\
\text { Creenwich } \\
\text { Civil Time. }
\end{gathered}
\]} \& \multicolumn{12}{|c|}{1910.} \& \multirow{2}{*}{(\(\begin{gathered}\text { Yearly } \\ \text { Heans. }\end{gathered}\)} \\
\hline \& January. \& February. \& March. \& April. \& may. \& June. \& July. \& August. \& September. \& October. \& November. \& December. \& \\
\hline \multirow[t]{2}{*}{\(\underset{\mathbf{I}^{\text {b }}}{\text { Midnight }}\)} \& \(37^{\circ} 7\) \& \(38^{\circ} 6\) \& \(3^{80} 6\) \& \(4{ }^{\circ} 1\) \& \(46^{\circ} \cdot 8\) \& 53.9 \& 53.3 \& \(5{ }^{\circ} \cdot 0\) \& \(51 \cdot 3\) \& \(50 \cdot 4\) \& \(36 \cdot 5\) \& \(42^{\circ} 4\) \& \(45^{\circ} \cdot 5\) \\
\hline \& \(37 \cdot 7\) \& 38.5 \& \(38 \cdot 3\) \& \(40 \cdot 8\) \& \(46 \cdot 6\) \& 53.5 \& \(53 \cdot 1\) \& 54.8 \& 51.1 \& \(50 \cdot 3\) \& \(36 \cdot 6\) \& 42.0 \& 45.3 \\
\hline \multirow{5}{*}{5} \& \(37 \%\) \& 38.6 \& \(38 \cdot 1\) \& \(40 \cdot 6\) \& \(46 \cdot 3\) \& \(53^{\circ}\) \& \(53^{\prime} 1\) \& \(54 \cdot 6\) \& 50.9 \& \(50 \cdot 1\) \& \(36 \cdot 5\) \& \(42 \cdot 0\) \& \(45^{\text {. }}\) \\
\hline \& 37.5 \& 38.8 \& 38.0 \& \(40 \cdot 3\) \& \(46 \cdot 2\) \& \(52 \cdot 7\) \& \(52 \cdot 7\) \& \(5+3\) \& \(50 \cdot 6\) \& \(50 \cdot 0\) \& \(36 \cdot 2\) \& \(41^{\prime} 9\) \& 44.9 \\
\hline \& \(37 \cdot 3\) \& 38.9 \& 37.6 \& \(40 \cdot 2\) \& \(46 \cdot 1\) \& 52.5 \& 52.5 \& 54.3 \& \(50 \cdot 4\) \& \(49 \cdot 8\) \& 35.9 \& \(42 \cdot 0\) \& \(44 \cdot 8\) \\
\hline \& \(37{ }^{\circ}\) \& \(39^{\circ}\) \& 37.4 \& \(40 \cdot 1\) \& \(46 \cdot 2\) \& 52.7 \& 52.6 \& 54.2 \& \(50 \cdot 1\) \& 49.9 \& 35.7 \& \(42 \cdot 1\) \& 44.8 \\
\hline \& \(37 \cdot 1\) \& \(39^{\circ}\) \& 37.2 \& \(40 \cdot 4\) \& \(46 \cdot 7\) \& 53.6 \& 52.9 \& 54.7 \& 50.1 \& \(49 \cdot 8\) \& \(35^{\circ}\) \& \(42 \cdot 2\) \& 44.9 \\
\hline \multirow[t]{2}{*}{7} \& 37.2 \& \(39^{\circ} \mathrm{L}\) \& 37.5 \& 41.4 \& \(47 \cdot 8\) \& 54.6 \& 53.6 \& 55.9 \& \(50 \cdot 7\) \& 50.0 \& \(35^{\circ} \mathrm{O}\) \& 42.3 \& 45.4 \\
\hline \& 37.3 \& 39.5 \& 38.4 \& \(42 \cdot 7\) \& \(49^{\prime 2}\) \& 56.0 \& 54.4 \& 57.1 \& 51.9 \& 50.5 \& \(35^{1}\) \& \(42 \cdot 5\) \& \(46 \cdot 2\) \\
\hline \multirow[t]{2}{*}{9
10} \& 37.7 \& \(40^{\prime 2}\) \& \(40^{\circ}\) \& 43.8 \& 50.1 \& 56.9 \& \(55^{1}\) \& 57.9 \& \(53 \cdot 6\) \& \(51 \cdot 2\) \& \(35^{\circ} 8\) \& \(42 \cdot 8\) \& 47.1 \\
\hline \& 38.2
38.8 \& \(41^{12}\) \& \(41 \cdot 1\) \& 44.6 \& 50.9 \& 57.9 \& 55.6 \& \(59^{\circ}\) \& 54.4 \& 52.1 \& \(37 \cdot\)
38 \& 43.3
4.8 \& 47.9 \\
\hline \multirow[t]{2}{*}{\[
\begin{gathered}
11 \\
\text { Noon }
\end{gathered}
\]} \& \(38 \cdot 8\)
\(30 \cdot 3\) \& \(41^{1} 9\) \& 42.4 \& \(45^{\circ} \mathrm{O}\) \& 517 \& \(58 \cdot 6\) \& 55.8 \& 59.3 \& \(55^{2} .2\) \& 52.7 \& 38.3 \& \(43 \cdot 8\) \& \(48 \cdot 6\) \\
\hline \& 39.3 \& 42.4 \& 43.3 \& \(45 \cdot 7\) \& 52.3 \& 59.2 \& 56.2 \& 59.4 \& \(55^{6}\) \& 53.0 \& \(39^{1}\) \& \(44^{2}\) \& \(49^{\circ} \mathrm{I}\) \\
\hline \(13^{\text {h }}\) \& 39.5 \& \(42 \cdot 6\) \& \(43 \cdot 8\) \& \(46 \cdot 2\) \& 52.7 \& 59.7 \& \(57^{\circ}\) \& 59.8 \& \(56 \cdot 1\) \& \(53^{\circ} \mathrm{O}\) \& 39.4 \& 44.4 \& \(49 \cdot 5\) \\
\hline 14 \& 39.5 \& \(42 \cdot 4\) \& 43.9 \& \(46 \cdot 5\) \& 52.9 \& 59.8 \& 57.3 \& \(60 \cdot 2\) \& \(56 \cdot 3\) \& 53.0 \& 394 \& 443 \& \(49 \cdot 6\) \\
\hline \multirow[t]{2}{*}{15
16} \& 39.20 \& \(42 \cdot 2\) \& \(43 \cdot 8\) \& \(46 \cdot 5\) \& \(52 \cdot 6\) \& 59.4 \& 57.4 \& 59.9 \& \(56 \cdot 0\) \& 52.7 \& 39.2 \& \(44^{2}\) \& \(49^{\circ} 4\) \\
\hline \& 38.9 \& \(4 \mathrm{I} \cdot 6\) \& 43.4 \& \(46 \cdot 2\) \& \(52 \cdot 1\) \& 59.4 \& 57.4 \& 59.5 \& 55.5 \& 52.2 \& 38.7
38.3 \& 43.9 \& 49.1 \\
\hline 17 \& 38.7
38.4 \& \(40 \cdot 9\)
\(40 \cdot 3\) \& \(42 \cdot 7\)
4.9 \& 45.4 \& 51.7
51.0 \& 58.9 \& 57.2
56.9 \& 59.1
58.5 \& \(54 \cdot 8\) \& 51.7
51.4 \& \(38 \cdot 3\)
37.9 \& 43.7 \& \(48 \cdot 6\)
48.0 \\
\hline 18 \& 38.4 \& \(40 \cdot 3\)
306 \& \(41^{\cdot} 9\) \& \(44^{6}\) \& \(51^{\circ} \mathrm{O}\) \& 58.1 \& 56.9 \& 58.5 \& \(54^{\circ}\) \& 51.4 \& 37.9 \& 43.4 \& 48.0 \\
\hline \multirow[t]{2}{*}{19
20} \& 38.4 \& \(39^{6}\) \& \(41 \cdot 1\) \& 43.9 \& \(50 \cdot 1\) \& 57.4 \& \(56 \cdot 3\) \& 57.7 \& 53.3 \& \(50 \cdot 8\) \& 37.4 \& 43.2 \& 474 \\
\hline \& \(38 \cdot 3\) \& 39.3 \& \(40 \cdot 3\) \& \(43 \cdot 1\) \& \(49^{\circ} \mathrm{O}\) \& 56.6 \& 55.5 \& 56.9 \& \(52 \cdot 7\) \& \(50 \cdot 4\) \& \(36 \cdot 8\) \& 42.8 \& \(46 \cdot 8\) \\
\hline 21 \& \(38 \cdot 1\) \& 38.8 \& 39.4 \& 427 \& \(48 \cdot 3\) \& 55.5 \& 54.6 \& 56.3 \& 52.1 \& 504 \& \(36 \cdot 6\) \& \(42 \cdot 7\) \& \(46 \cdot 3\) \\
\hline \multirow[t]{2}{*}{22
23} \& \(38 \cdot 0\)
37.8 \& \(38 \cdot 6\)
38.6 \& \(39^{\circ}\) \& 42.4 \& 47.8 \& 54.8 \& 54.1
53 \& 55.8 \& 51.7 \& \(50^{\prime 2}\) \& \(36 \cdot 4\) \& \(42 \cdot 7\) \& \(46 \cdot 0\) \\
\hline \& \(37 \cdot 8\) \& 38.6 \& 38.7 \& \(4{ }^{2 \cdot 1}\) \& 47.2 \& 54.4 \& 53.7 \& \(55^{\circ} 5\) \& 514 \& 50.2 \& \(36 \cdot 3\) \& \(42 \cdot 5\) \& \(45 \cdot 7\) \\
\hline 24 \& \(37 \cdot 7\) \& \(38 \cdot 6\) \& 38.4 \& \(41^{6}\) \& \(46 \cdot 9\) \& \(54 \%\) \& 53.4 \& \(55^{\circ}\) \& \(5{ }^{1 \cdot 1}\) \& \(50 \cdot 3\) \& \(36 \cdot 2\) \& 424 \& \(45 \cdot 5\) \\
\hline \multirow[t]{2}{*}{} \& \(38 \cdot 1\) \& \(40^{\circ}\) \& \(40 \cdot 2\) \& 43.2 \& 493 \& 56.2 \& 54*9 \& \(57^{1}\) \& 52'9 \& 51.1 \& \(37^{1} 1\) \& \(43^{\circ}\) \& \(46^{\circ} 9\) \\
\hline \& 38.1 \& \(40 \cdot 0\) \& \(40 \cdot 2\) \& 43.2 \& \(49^{\circ} 3\) \& 56.2 \& 54.9 \& 57'1 \& 52.9 \& 51.1 \& \(37^{\circ}\) \& \(43^{\circ} \mathrm{O}\) \& \(46 \cdot 9\) \\
\hline \(\underbrace{\text { a }}_{\substack{\text { Number of Days } \\ \text { emplo ead. }}}\) \& 31 \& 28 \& 31 \& 30 \& 31 \& 29 \& 31 \& 31 \& 30 \& 31 \& 30 \& 31 \& ... \\
\hline \multicolumn{14}{|c|}{Monthly Mean Temperature of the Dew Point at every Hour of the Day, as deduced by Glaisher's Tabl} \\
\hline \multirow[t]{2}{*}{Hreour,
Civil Time.
Cive} \& \multicolumn{12}{|c|}{1910.} \& \multirow{2}{*}{\(\xrightarrow[\substack{\text { Yearly } \\ \text { Means. }}]{ }\)} \\
\hline \& January. \& Felruary. \& March. \& April. \& May. \& June. \& July. \& August. \& September. \& October. \& November. \& December. \& \\
\hline \multirow[t]{2}{*}{\(\underset{\mathbf{I}^{\mathrm{h}}}{\text { Midgigh }}\)} \& \(35^{\circ} 5\) \& \(36 \cdot 8\) \& \(37^{\circ} \cdot 2\) \& \(38 \cdot 7\) \& \(45^{\circ} \mathrm{O}\) \& 52.3 \& 52.0 \& \& \& \(49^{\circ} \mathrm{O}\) \& \(34^{\circ} \cdot 8\) \& \(40 \cdot 7\) \& \(43^{\circ} \cdot 8\) \\
\hline \& 35.7 \& \(36 \cdot 7\) \& 36.9 \& 38.7 \& 44.8 \& 52.0 \& 519 \& 53.5 \& \(49^{\circ} 5\) \& 48.8 \& \(34 \cdot 9\) \& \(40 \cdot 3\) \& \(43^{\cdot 6}\) \\
\hline \multirow[b]{2}{*}{3} \& \(35 \cdot 8\) \& \(36 \cdot 9\) \& \(36 \cdot 8\) \& \(38 \cdot 8\) \& 44.6 \& 51.8 \& 52.0 \& 53.4 \& \(49 \cdot 5\) \& 48.8 \& 34.9 \& \(40 \cdot 6\) \& \(43 \cdot 7\) \\
\hline \& 35.6 \& \(37 \cdot 2\) \& \(36 \cdot 8\) \& 38.3 \& 44.6 \& 51.5 \& 51.4 \& \(53^{\circ}\) \& \(49^{.2}\) \& 48.8 \& 34.4 \& \(40 \cdot 5\) \& 43.4 \\
\hline \multirow[t]{2}{*}{4
5} \& 35.5 \& 37.2 \& \(36 \cdot 1\) \& 38.3 \& 4.4 .7 \& 51.5 \& 513 \& 53.1 \& 48.9 \& \begin{tabular}{l}
\(48 \cdot 7\) \\
48 \\
\hline 8.8
\end{tabular} \& \(34 \cdot 1\) \& \(40 \cdot 6\) \& \(43 \cdot 3\) \\
\hline \& 35.1 \& \(37 \cdot 5\) \& \(36 \cdot 0\) \& 38.2
38.5 \& 44.8 \& 515 \& 515 \& \(53^{\circ}\) \& \(48 \cdot 6\) \& 48.8
48.8 \& \& \(40 \cdot 7\) \& \(43 \cdot 3\) \\
\hline 6 \& \begin{tabular}{l}
354 \\
354 \\
\\
\hline
\end{tabular} \& 37.2
37.6 \& \(35 \cdot 6\)
36.0 \& 38.5
38.9 \& \(45 \cdot 1\)
45.7 \& 52.1
52.4 \& 51.4
51.8 \& 53.3
54.1

5 \& $48 \cdot 7$
49 \& $48 \cdot 8$
48.9 \& $33 \cdot 6$
33.4 \& $40 \cdot 8$
$41^{\circ} \mathrm{O}$ \& $43 \cdot 4$
43

\hline 7
8 \& 354
354
3 \& $37 \cdot 6$
37.8 \& $36 \cdot$
$36 \cdot 5$ \& 38.9
39.6 \& $45 \cdot 7$
$46 \cdot 3$ \& 52.4
53.1 \& 51.8
51.9 \& 54.1
54.3 \& $49 \cdot 0$
$49 \cdot 6$ \& $48 \cdot 9$
49
49 \& 33.4
33.4 \& $44^{11^{\circ}}$ \& 43
$44^{\circ} \mathrm{O}$

\hline \multirow[t]{2}{*}{9} \& 35.7 \& 38.0 \& 37.4 \& 39.7 \& $46 \cdot 5$ \& 52.9 \& 51.9 \& 54.2 \& 50.4 \& $49^{\circ} 3$ \& $33 \cdot 6$ \& 4.4 \& 44.3

\hline \& 36.0 \& 38.9 \& 37.7 \& $40 \cdot 0$ \& $46 \cdot 6$ \& $53 \cdot 3$ \& 52.0 \& 54.4 \& $50 \cdot 5$ \& $49^{\circ} 7$ \& 34.4 \& $4{ }^{1} 7$ \& 44.6

\hline \multirow[t]{2}{*}{$$
11
$$} \& $36 \cdot 0$ \& 39.2 \& 37.8 \& $39 \cdot 8$ \& $46 \cdot 7$ \& 53.4 \& 51.8 \& 54.4 \& 50.7 \& $49 \cdot 4$ \& 35.5 \& 41.6 \& $44 \cdot 7$

\hline \& $36 \cdot 1$ \& 39° \& 37.9 \& $40 \cdot 2$ \& 47° \& 53.8 \& 51.9 \& 54.1 \& $50 \cdot 8$ \& $49^{\circ}{ }^{\circ}$ \& $36 \cdot 0$ \& 41.8 \& $44 \cdot 8$

\hline Noon
$13^{\text {b }}$ \& $36 \cdot 1$ \& $38 \cdot 7$ \& 37.9 \& $40 \cdot 7$ \& $47^{1} 1$ \& 54° \& 52.5 \& 54.2 \& 50.8 \& 48.9 \& $36 \cdot 0$ \& $41^{1} 6$ \& 44.9

\hline 14 \& $36 \cdot 1$ \& 38.4 \& 38.0 \& 40.5 \& $47^{\circ} \mathrm{O}$ \& 53.8 \& 52.3 \& 54.6 \& 51.1 \& 49° \& 35.7 \& 41^{16} \& $44^{\circ} 8$

\hline 15 \& 35.7
35 \& $38 \cdot 3$
38.0 \& 38.2
38.0 \& $40 \cdot 8$
40.8 \& $46 \cdot 5$ \& 53.7 \& 52.2 \& 54.4 \& $50 \cdot 6$
50.4 \& 49.0
48.7 \& 35.4 \& 41.6
41.6 \& 44.7
44

\hline 16 \& 35.9 \& 38.0
37 \& 38.0 \& $40 \cdot 8$ \& $46 \cdot 0$ \& 53.6 \& 52.4 \& 54.2 \& 50.4 \& $48 \cdot 7$
48.8 \& 35.4
354 \& 41.6
41.4 \& $44 \cdot 6$
44.6

\hline 17 \& 35.9 \& 37.8
37.5 \& 37.9
38.0 \& $40 \cdot 6$
40.6 \& $46 \cdot 2$ \& 53.4
53.2 \& 52.7 \& 54.3
54.4 \& 50.3
$50 \cdot 2$ \& $48 \cdot 8$
49.0 \& 35.4
35.3 \& 41.4
41.1 \& 44.6
44.5

\hline 18 \& $35 \cdot 8$
$36 \cdot 1$ \& \& 38.0
38.0 \& \& $45 \cdot 9$
45.8 \& 53.2
53.6 \& $52 \cdot 9$
53.1 \& 54.4
54.3 \& 5 \& 49.
48 \& 35.3
34.9 \& $41 \cdot 1$ \& 44.5
44.4

\hline $$
19
$$ \& $36 \cdot 1$

$36 \cdot 1$ \& $37 \cdot 2$
$37 \cdot 2$
368 \& 38.
37 \& 40.4
39.9 \& $45 \cdot 8$
45 \& 53.8
53.8 \& 53.2 \& 54.3
54.3 \& 50.3 \& $48 \cdot 3$ \& 34.5 \& $40 \cdot 5$ \& $44 \cdot 3$

\hline 20 \& 35.9 \& $36 \cdot 8$ \& 37° \& $40 \cdot 1$
4.8 \& $45 \cdot 4$ \& 53^{2} \& 52.7 \& 54.1 \& 49.9 \& $48 \cdot 7$ \& 345 \& $40 \cdot 6$ \& $44^{.1}$

\hline 22 \& 35.9 \& $36 \cdot 8$
36.8 \& $36 \cdot 9$ \& $39 \cdot 8$
39 \& 45.3 \& 52.8 \& 52.4 \& 53.9 \& 49.8 \& $48 \cdot 6$
48.6 \& 34.5
34.3 \& $40 \cdot 6$
40.6 \& 43.9
43.8

\hline \multirow[t]{2}{*}{23
24} \& 35.8 \& $36 \cdot 8$
$36 \cdot 8$ \& $36 \cdot 9$
$36 \cdot 7$ \& 39.6
39.4 \& $44^{\circ} 9$ \& 52.7
52.5 \& 52.3
52.1 \& 54.0
53.5 \& 49.6
49.5 \& 48.6
48.9 \& 34.3
34.3 \& $40 \cdot 6$
$40 \cdot 7$ \& 438
438

\hline \& 35.6 \& $36 \cdot 8$ \& $36^{\prime} 7$ \& 39.4 \& 45° \& $52 \cdot 5$ \& $52 \cdot 1$ \& 53.5 \& $49 \cdot 5$ \& $48 \cdot 9$ \& 343 \& $40 \cdot 7$ \& 438

\hline \multirow[t]{2}{*}{} \& 35.8 \& 37.6 \& 37.2 \& 39^{6} \& 457 \& $52 \cdot 9$ \& 52.1 \& 54° \& $49^{\circ} 9$ \& 48.9 \& 34.7 \& $41^{\circ} 0$ \& 44.1

\hline \& $35 \cdot 8$ \& $37 \cdot 6$ \& $37 \cdot 2$ \& $39^{\circ} 7$ \& 457 \& $52^{\circ} 9$ \& 52.1 \& 54° \& $49^{\circ} 9$ \& 48.9 \& $34 \cdot 7$ \& $4^{1} \circ$ \& 44^{1}

\hline
\end{tabular}

Monthly Mean Degree of Humidity (Saturation = ioo) at every Hour of the Day, as deduced by Glaisher's Tables from the corresponding Air and Evaporation Temperatures.

Hour, Greenwich Civil Time.	1910.												Mearly
	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.	
Midnight	86	89	91	84	88	89	91	89	90	90	89	89	89
$\mathrm{I}^{\text {h }}$	88	89	91	86	88	90	92	91	90	90	89	89	89
2	88	90	92	88	89	92	92	92	90	91	90	90	90
3	89	90	93	88	90	92	91	91	90	92	89	90	90
4	89	90	92	89	91	93	92	91	90	92	89	90	91
5	88	90	92	89	91	92	92	91	90	92	90	90	91
6	90	89	90	89	90	90	90	90	90	93	90	90	90
7	89	90	91	84	87	85	88	87	88	92	90	91	88
8	89	89	88	80	81	80	83	81	84	90	89	91	85
9	88	86	84	75	76	74	78	75	79	87	87	90	82
10	86	85	78	71	72	70	76	70	74	83	85	89	78
11	83	82	72	69	68	66	73	68	70	78	83	86	75
Noon	81	79	68	67	67	66	72	66	69	73	81	85	73
$13^{\text {b }}$	79	77	65	66	65	65	71	64	67	72	79	83	71
14	79	75	65	65	63	62	67	64	67	73	78	83	70
15	79	76	66	66	62	64	67	65	66	76	77	84	71
16	82	77	68	67	62	63	68	66	68	78	80	86	72
17	83	80	71	71	65	65	70	69	71	80	82	86	74
18	84	83	76	75	67	68	74	73	75	83	84	85	77
19	86	86	79	78	72	75	79	77	80	85	85	86	81
20	86	86	84	80	77	82	84	83	84	86	86	86	84
21	86	88	85	84	81	83	86	85	85	88	87	87	85
22	87	89	86	84	84	86	88	86	87	89	88	87	87
23	88	89	89	84	86	88	90	89	88	89	87	87	88
24	87	89	90	85	87	89	91	89	90	90	88	89	89
a $\int^{0} 0^{\mathrm{h}} .-23^{\mathrm{h}}$.	86	85	81	78	78	78	81	79	80	85	86	87	82
$\sum \quad 1^{\text {h }} \cdot-24^{\mathrm{h}}$.	86	85	8 I	78	78	78	81	79	80	85	86	87	82

Total Amount of Sunshine registered in each Hour of the Day in each Month, as derived from the Records of the Campbell-Stokes Self-Registering Instrument for the Year 1910.

Month, г910.	Registered Duration of Sunshine in the Hour ending																			
	出	\%	$\dot{*}$	$\dot{\overline{\text { ¢ }}}$	$\dot{5}$	$\stackrel{\square}{\circ}$	$\dot{\square}$	言	$\stackrel{\sim}{m}$	$\stackrel{4}{4}$	2	\%	$\dot{\sim}$	*	$\dot{8}$	\%				
January	h \ldots	h	h. 	h \ldots	${ }^{\text {h }}$ 2.2	$\begin{gathered} \mathrm{h} \\ 5 \cdot 7 \end{gathered}$	$\begin{gathered} \mathrm{h} \\ 8 \circ \end{gathered}$	$\begin{gathered} \mathrm{h} \\ 9^{\circ} \end{gathered}$	$\begin{gathered} \mathrm{h} \\ g^{\prime} \end{gathered}$	$\begin{gathered} \mathrm{h} \\ 9.7 \end{gathered}$	$\begin{gathered} \mathrm{h} \\ 8 \cdot 3 \end{gathered}$		h	h \cdots .	h \cdots	h \cdots	h 5 5	$\begin{gathered} \text { 2 } \\ 58 \\ 8 \end{gathered}$	$0 \cdot 207$	18
February.....	\ldots	\ldots	\ldots	$2 \cdot 2$	7.2	9.0	8.0	9.1	10.3	9.8	$8 \cdot 1$	$5 \cdot 1$	$1 \cdot 1$	\ldots	\ldots	\ldots	69.9	${ }^{2} 76 \cdot 7$	0.253	26
March.		\ldots	2.8	$9 \cdot 9$	12.0	13.5	17.1	18.0	$17 \cdot 2$	16.3	137	15.9	11.1	$2 \cdot 0$	\cdots	\ldots	149.5	$366 \cdot 2$	$\bigcirc \cdot 408$	37
April .	\ldots	3.0	$7 \cdot 4$	9×3	11.8	$10 \cdot 9$	$12^{\circ} \mathrm{O}$	12.5	113	11.2	$10 \cdot 7$	$10 \cdot 2$	9.9	8.0	1.6	\ldots	129.8	$413 \cdot 6$	0.314	48
May.....	$\bigcirc \cdot 9$	$6 \cdot 9$	$10 \cdot 5$	11.2	13.1	16.2	$18 \cdot 1$	18.9	19.3	19°	18.9	18.9	17.5	16.0	12.2	1.8	219.4	481.5	0.456	57
June.,	$3 \cdot 2$	$8 \cdot 0$	$9^{\circ} \mathrm{O}$	9*9	$10 \cdot 3$	116	11.8	12.5	14.6	$16 \cdot 5$	17•1	16.2	$15 \cdot 3$	13°	119	3.9	184.8	$494 \cdot 3$	0.374	62
July .	$0 \cdot 9$	$4 \cdot 4$	4.4	6.4	6.2	6.9	5.2	$6 \cdot 9$	$9 \cdot 1$	11.3	119	10.8	$10 \cdot 1$	9.5	$7{ }^{\circ}$	19	112.9	497*9	0.227	60
August	0.6	$4 \cdot 5$	10.0	11.6	14°	16.8	$16 \cdot 8$	15.2	16.3	16.4	14.3	12.9	12.0	97	5.7	0.2	$177{ }^{\circ}$	$450 \cdot 8$	$\bigcirc \cdot 393$	52
September...	...	$\bigcirc \cdot 3$	5.0	10.6	14.2	14.6	15.7	13.9	15°	13.8	124	13.5	9.6	37	...	\ldots	142.3	379.2	$\bigcirc \cdot 375$	41
October ..	\ldots	...	$0 \cdot 2$	3.2	$5 \cdot 2$	7×4	11.7	$12 \cdot 1$	117	7.5	6.2	$3 \cdot 8$	$1 \times$...	\ldots	...	$70 \cdot 0$	$330 \cdot 6$	0.212	30
November	\cdots	\cdots	...	$0 \cdot 4$	4.2	7.4	$6 \cdot 5$	78	77	$6 \cdot 8$	$7{ }^{\circ}$	24	$\bigcirc \cdot 1$	\ldots	\ldots	...	$50 \cdot 3$	$266 \cdot 1$	$\bigcirc 189$	20
December...			\ldots	...	$0 \cdot 4$	3.7	$3 \cdot 1$	2.5	$4^{\circ} \mathrm{O}$	3.5	$2 \cdot 6$	\ldots	\ldots	\ldots	...	\ldots	19.8	244°	-0.08	16
For the Year	5.6	27.1	493	747	$100 \cdot 8$	1237	134°	1384	145.6	141.8	1312	1113	87.7	61.9	38.4	$7 \cdot 8$	13793	4459.7	0.309	\ldots
The hours are reckoned from apparent midnight.																				

$\begin{gathered} \text { Days } \\ \text { of the } \\ \text { Month. } \end{gathered}$	Dry-Bulb Thermometers, 4 ft . above the Ground.						Wet-Bulb Thermometer, 4 ft . above the Ground				$\begin{array}{\|c} \text { Days } \\ \text { of the } \\ \text { Month. } \end{array}$	Dry Bulb Thermometers, 4 ft . above the Ground.						Wet-Bulb Thermometer, 4 ft . above the Ground.			
	$\begin{aligned} & \text { Maxi: } \\ & \text { mam. } \end{aligned}$	Mini. mum	$9^{\text {h }}$	Noon.	${ }^{15}{ }^{\text {h }}$	$2 \mathrm{r}^{\text {b }}$	$9^{\text {b }}$	oon.		21^{11}		Maxi.	Mini-	$9^{\text {b }}$	Noon.	${ }^{151}$	21^{16}	$9^{\text {11 }}$	oon.	${ }^{515}$	$2 \mathrm{r}^{\text {h }}$
January.											March.										
1	$44 \cdot 8$	$33^{\circ} 1$	$35^{\circ} 4$	$40 \cdot 8$	$43 \div 6$	$44 \cdot 5$	34.8	39'I	413	43.7	${ }_{1}^{\text {a }}$	$48 \cdot 3$	$33^{\prime} 1$	$36^{\circ} 6$	43.8	$47 \cdot 6$	$38^{\circ} \mathrm{O}$	$35^{\circ} 6$	$37 \cdot 8$	$40^{\circ} 2$	36.6
2	55.3	$44 \cdot 1$	48.3	$50 \cdot 5$	$54 \cdot 6$	$52 \cdot 6$	$48 \cdot 1$	49.8	52.7	51.4	2	53.4	359	$45 \cdot 6$	50'I	$49 \cdot 8$	$42 \cdot 3$	$43 \cdot 6$	$46 \cdot 6$	$46 \cdot 6$	$40 \cdot 6$
3	54%	43°	$48 \cdot 6$	48.6	47.8	43.5	$47^{\text {I }}$	$46 \cdot 8$	457	$42 \cdot 6$	3	51.8	$3+\cdot 1$	$42 \cdot 2$	49.6	$49^{\prime} 9$	38.6	$40 \cdot 4$	43.1	43.8	$38 \cdot$
4	45.2	41.3	$43 \cdot 1$	$44 \cdot 6$	42.4	414	$42 \cdot 8$	$43 \cdot 6$	419	$41 \cdot 3$	4	$50 \cdot 1$	$33^{\circ} \mathrm{O}$	41.2	$49 \cdot 8$	$47 \cdot 6$	$40 \cdot 7$	$39 \cdot 8$	44.8	43.7	$40^{\circ} \mathrm{I}$
5	$42^{\circ} \mathrm{O}$	39°	41.4 374	41.4	$42 \cdot$	$40 \cdot 1$ 47	$41 \cdot 3$	41°	41°	$39 \cdot 4$ 37.6	5	$57^{\circ} \mathrm{O}$	35.1	44.5	54.2	557	$44^{\circ} 4$	42.5	$49 \cdot$	47.8	42.5
6	413	$36 \cdot 7$	$37 \cdot 5$	39.9	41°	37.8	37°	39.2	40.4	$37 \cdot 6$	6	55^{6}	41.2	513	52.6	497	$45 \cdot 5$	47.6	47.8	45.6	$44^{1} 1$
7	$40 \cdot 7$	37.3	39.1	39.9	$39^{\circ} 9$	$37^{\circ} 9$	38.4	$38 \cdot 8$	$38 \cdot 8$	$37 \cdot 2$	7	57.7	$4{ }^{2 \cdot 1}$	48.4	$53 \cdot 6$	55.2	$42 \cdot 6$	$46 \cdot 6$	$48 \cdot 8$	$48 \cdot 8$	41.7
8	$46 \cdot 7$	$37 \cdot 8$	$42^{1} 1$	$42 \cdot 6$	44°	$46 \cdot 6$	41^{2}	$40 \cdot 9$	$42 \cdot 1$	$44 \cdot 3$	8	55.8	39.5	46.9	51.1	54.6	50.2	$46 \cdot 5$	$49^{\circ} 2$	51.5	48.7
9	52.1	44.9	$49 \cdot 5$	51.6	$5{ }^{1} 9$	$51^{\circ} 9$	47°	49.4	50.2	49.7 4 4	9	52.8	$45^{\circ} 3$	$50 \cdot 6$	49.8 48.5	$50 \cdot 8$ 50.8	$45 \cdot 6$	4	49.0	50 45 4	44.4 41.2
10	52.2 45.3		48.4 4.9	$50 \cdot 6$ 43.6	$46 \cdot 0$ $40 \cdot$	44.4 38.7	$46 \cdot 2$ $40 \cdot 7$	$46 \cdot 1$ 39°	$43 \cdot 6$ 36.8	$42 \cdot 3$ 37.3	10	53.3 49.3	42.1 40.3	44.8 43.6	48.5 47.8	50.8 46.6	$42 \cdot 3$ 43	42.8 40.8	$43 \cdot 9$ 43.8	$45 \cdot 8$ 43.2	$41 \cdot 2$ $41 \cdot 2$
11	45.3 40.0	$38 \cdot 1$ 33.2	43.9 354	$43 \cdot 6$ 38.6	40.0 38.6	38.7 34.9	$40 \cdot 7$ 33	39° 34.9	$36 \cdot 8$ $3+3$	$37 \cdot 3$ 32.6	12	49.3 $43^{\prime 2}$ 4	$40 \cdot 3$ 38.1	43.6 39.9	$47 \cdot 8$ $42 \cdot 1$	$46 \cdot 6$ $42 \cdot 2$	43 40 8	$40 \cdot 8$ 39	$43 \cdot 8$ 412	$43 \cdot 2$ 415	$41 \cdot 2$ $39 \cdot 7$
13	41.8	31.0	$32 \cdot 9$	$38 \cdot 3$	41.I	414	31.5	35°	37.8	$39 \cdot 3$	13	$46 \cdot 2$	33^{1}	38.4	$4+6$	43.7	$36 \cdot 4$	35.4	38.8	$38 \cdot 2$	34.3
14	$53 \cdot 1$	41.1	$50 \cdot 1$	52.7	51.2	$47 \cdot 6$	$48 \cdot 6$	$49 \cdot 8$	$47^{\prime 2}$	$45^{1} 1$	14	513	28.9	41-1	48.4	$50^{\circ} 7$	$35 \cdot 3$	37.8	$41^{1} 2$	43.3	34.6
15	$50^{\circ} 5$	423	43.2	$46 \cdot 6$	46^{1}	50_{4}	$42 \cdot 2$	44^{8}	$45^{\circ} 1$	$48 \cdot 3$	15	50.7	27.9	34.4	$46 \cdot 5$	48.2	41.8	32.9	$40 \cdot 7$	$42 \cdot 2$	$40 \cdot 2$
16	$53^{\circ} \mathrm{O}$	44.3	$50 \cdot 8$	52.5	$50 \cdot 6$	44^{-8}	49^{1}	$49 \cdot 6$	49°	$41 \cdot 8$	16	$54^{\prime 2}$	$29^{\prime 2}$	$38 \cdot 6$	$49^{\circ} 9$	53.6	43.4	$36 \cdot 8$	42.5	$43 \cdot 8$	$40 \cdot 7$
17	$45 \cdot 3$	39.4	419	41^{6}	$41^{\circ} 4$	39.9	393	$39 \cdot 5$	$39^{\circ} 5$	37.2	17	51.0	$42 \cdot 1$	467	$48 \cdot 6$	$48 \cdot 6$	44^{6}	$43^{8} 8$	41^{18}	41.3	38.8
18	$47^{\circ} \mathrm{O}$	$39 \cdot 7$	$43 \cdot 8$	$46 \cdot 9$	45.6	44°	$4^{2} \cdot{ }^{\circ}$	$43^{\text {I }}$	42.2	41.8	18	$45^{\circ} \mathrm{O}$	32.9	$39 \cdot 8$	$36 \cdot 5$	33.0	33.8	$37 \cdot 6$	33.8	32.7	31.6
19	$44 \cdot 8$	39^{11}	$40 \cdot 0$	$43 \cdot 5$	42.6	$39^{\circ} 6$	$37 \cdot 1$	38.7	38.9	$36 \cdot 8$	19	$46 \cdot 3$	33.3	$39 \cdot 7$	423	42.2	$38 \cdot 9$	37.2	$39^{\circ} \mathrm{O}$	37.8	35.4
20	$4{ }^{2} \cdot 1$	34'I	$36 \cdot 3$	$40 \cdot 1$	$4{ }^{1} 6$	$38 \cdot 1$	$34 \cdot 8$	37-8	$38 \cdot 8$	35^{2}	20	$47 \cdot 2$	28.3	$39^{\circ} 2$	$46 \cdot$	47.1	37.4	36.9	$40 \cdot 8$	$4{ }^{2 \cdot 1}$	35.6
21	38.1	$3{ }^{3} 1$	$32 \cdot 6$	35.6	35.8	$30 \cdot 7$	$30 \cdot 5$	32.6	32.9	29.5	21	$52 \cdot$	$31^{\circ} 9$	38.7	47°	$48 \cdot 6$	477	$38 \cdot 5$	44.4	$46 \cdot 1$	45.1 36.6
22	$34 \cdot 6$	26.9	29.7 30.8	33.2	34.4	$30 \cdot 9$	$27 \cdot 6$ $33^{\circ} 2$	$30 \cdot 1$	$30 \cdot 0$	28.6	22	52.3 54	36.2 25.5	44.6	503	49.2	$36 \cdot 9$	$40 \cdot 7$ 33.8	43 $4{ }^{\circ} \mathrm{O}$	$42 \cdot 2$ 44.8	$36 \cdot 6$ 41.0
23	41.4 42	29.4 34	$33 \cdot 8$ 40.9	36.7 40.8	$35^{\prime} 1$ 39.6	41.4 36.8	33.2 39.5	$35 \cdot 3$ 38.5	34.7 $36 \cdot 5$	$40 \cdot 9$ 3.9	23 24	54.0 50.0	25.5 36.0	$36 \cdot 0$ 41.3	513 44.9	$50 \cdot 7$ 49.2	44.4 44.8	33.8 40.2	44.3 42 4	44.8 $44 \cdot 3$	41.0 41.1
24 25	42 3 3	34.1 28.7	$40 \cdot 9$ 33	$40 \cdot 8$ $35 \cdot 3$	39.6 35.4	$36 \cdot 8$ 28 2	39.5 30.6	$38 \cdot 5$ 31.5	36.5 30.3	35.4 26.6	24 25 2	$50 \cdot 0$ 53.8	$36 \cdot 0$ 42	$41 \cdot 3$ $46 \cdot 3$	44.9 52	$49 \cdot 2$ 51.8	44.8 44.8	$40 \cdot 2$ $40 \cdot 9$	$42 \cdot 8$ 44 4	$44 \cdot 3$ 44.9	41.1 $4 \cdot 1$ 2.1
25 26	$37^{\circ} \mathrm{O}$ 33°	28.7 23.8	33.4 26.4	35	35.4 32.2	27.8	30.8 24.8	315 28.1	38.5 28	25.8	25 26	$53 \cdot 8$ 48.3	424 374	40. 4	$43^{2} 2$	515	48.0	48.9 38	44	42.9	+ 37 1 1
27	$35^{\circ} \mathrm{I}$	$20 \cdot 3$	21.6	31.6	$35 \cdot 1$	$32 \cdot 9$	21°	$27 \cdot 6$	$27^{\circ} 9$	31.8	27	57.3	$34 \cdot 1$	38.9	51.1	57°	$40 \cdot 5$	$38 \cdot 8$	$47^{\circ} 2$	48.8	$40^{\circ} \mathrm{I}$
28	$44^{\circ} 9$	32.4	43.4	43^{2}	41^{16}	37.4	42°	39.5	37.3	35^{6}	28	55°	31.8	$46 \cdot 7$	52.9	52.0	$44^{\circ} \mathrm{O}$	43.5	47°	47.2	$42 \cdot 6$
29	$41^{\circ}{ }^{\circ}$	$32 \cdot 3$	33.7	38.0	$39^{\circ} 6$	35°	31.9	34.9	35°	32.9	29	50.7	$36 \cdot 6$	$40 \cdot 5$	47.4	$50 \cdot 2$	$36 \cdot 6$	38.2	42.4	43.8	$35 \cdot 2$ 37.2
30	38.0	29.1	$30 \cdot 3$	354	38.0	33.6	$29^{\circ} 4$	33.3	34.2	31.5	30	56.9	29.5	39.5	54.9	54.5	$40 \cdot 0$ 36.5	${ }^{37} 5$	46.0	${ }_{36 \cdot 1}^{46.6}$	$37 \cdot 2$ $32 \cdot 8$
31	45°	29.3	38.0	$43 \cdot 6$	$42 \cdot 6$	38.9	$35^{\circ} 9$	40'1	$39^{\circ} 9$	$36 \cdot 8$	31	45^{2}	$33^{1} 1$	39^{-8}	$42^{\prime} 9$	$43^{\circ} 4$	$36 \cdot 5$	35°	$36 \cdot 7$	$36 \cdot 1$	$32 \cdot 8$
Means	44.1	35.5	39	419	2.0	39.8	$37 \cdot 7$	$39 \cdot 3$	39^{2}	$38 \cdot 1$	Means	51.5	35.2	42	48.2	49°	41.3	$40 \cdot 0$	43.3	43	39.4
February.											ApriL.										
${ }_{\text {d }}$	$45^{\circ} \mathrm{O}$	$35^{\circ} \cdot 2$	$39^{\circ} \mathrm{I}$	$4{ }^{\circ} 5$	$42 \cdot 8$	$35^{\circ} 7$	37*	$38 \cdot{ }^{\circ}$	39°	$33^{\circ} 8$	$\stackrel{\text { d }}{\text { I }}$	$48^{\circ} \cdot 6$	34°	40.6	44°	$47^{\circ} \cdot 6$	$37^{\circ} 6$	36.0	38.2	39.3	$35 \cdot 5$
2	$40^{\circ} 3$	35.3	$37^{\circ} 6$	38.0	38.9	35.8	$36 \cdot 8$	$37 \cdot 1$	$38 \cdot 1$	$35^{\prime} 1$	2	$50 \cdot 0$	35°	44.7	$49 \cdot 3$	49.5	36.9	$40 \cdot 7$	$41 \cdot 2$	$42 \cdot 6$	$34 \cdot 7$
3	$42^{\circ} \mathrm{O}$	31.4	39°	$41^{\circ} \mathrm{O}$	$40 \cdot 4$	31.4	38.2	39.7	38.3	31.4	3	52.1	25.5	42.0	$48 \cdot 5$	51.6	$40 \cdot 8$	37.9	$4{ }^{12}$	- 8	38.5
4	$42^{\circ} \mathrm{O}$	${ }^{29.1}$	$33^{2} 2$	$39^{\circ} 6$	418	33.1	31.8	36.8	38.0	$32 \cdot 0$	4	51°	36.7	42.9	48.9	47.3	$40 \cdot 6$	$39^{\circ} 6$	43.3	43.3	39.8
5	$50 \cdot 2$	27.5	38.0	42.8	44.6	50.1	$36 \cdot 6$	41.8	43.9	$49^{\circ} 2$	5	52.8	38.2	$43 \cdot 1$	$45^{\circ} \mathrm{C}$	50.0	38.6	$40^{\prime} 9$	42.2 458	$45^{\circ} 2$	$36 \cdot 8$
6	53.2	$49 \cdot 8$	$50 \cdot 7$	52.6	51.6	$50 \cdot 6$	498	$50 \cdot 8$	$50 \cdot 8$	49^{6}	6	53.7	34.6	$41^{\prime} 9$	48.5	51.6	43.9 43.5	$40 \cdot 4$	$45 \cdot 8$ $42 \cdot 7$	$46 \cdot 1$ $42 \cdot 9$	41.9 41%
7	$54^{\circ} \mathrm{O}$	477	51.9	53.5	52.5	47.8	49.9	51.0	48.8	44.9	7	47.3	41.1	42.7 42.6	$45^{4} \cdot 6$	$46 \cdot 4$ 47	43.5 42.7	$41 \cdot 7$ $39^{\circ} 6$	42.7 40.8	$42^{\circ} 9$ 41.6	$41 \circ$ $40 \cdot 9$
8	$47^{\circ} 9$	37.3	41	44.4	39°	37.6	39^{-1}	415	$37 \cdot 9$	35.9	8	49°	357	42.6	$44 \cdot 6$ 52	$47 \cdot 8$ 53.6	42 47 19	${ }^{3} 1{ }^{\circ} 12$	$40 \cdot 8$ 44.8	$4{ }^{4} 1.9$	$40^{\circ} 9$ 438
10	$4{ }^{1.2}$	29.6 28.6	$32 \cdot 9$ 38.6	$37 \cdot 6$ 44.7	40.4 45 1	29.6 43.6	31.9 $36 \cdot 6$	$35 \cdot 3$ 412	$36 \cdot 3$ 4.6	29.4 42.7	10	56.0	34.2 39	44.6 43.1	$52 \cdot 8$ 46.7	53.6 47.8	47.9 41.8	$41 \cdot 2$ 4.2	$44 \cdot 8$ 43.3	44.9 45	$4{ }^{4} 1.8$
10	$46 \cdot 0$ 500	28.6 36	$38 \cdot 6$ 414	44.7 476	$45^{\prime} 1$ $44^{\circ} 5$	43.6 36.9	$36 \cdot 6$ $40 \cdot 1$	$41 \cdot 2$ 44.1	$41 \cdot 6$ 4.9	42 35	10	49.7 59	39.5 40.2	43.1 50.6	46.7 53	47.5	43.7	45.8	$47 \cdot 9$	48.4	41^{12}
11	50 44.7	39.9 29	31 35°	$42 \cdot 1$	$44 \cdot 6$ 44	39.8	$3{ }^{4} 5$	48.8 3	419 40.1	357 37	1	69.1	41.1	$48 \cdot 5$	$58 \cdot 5$	54.6	$50 \cdot 5$	45.4	$51 \cdot 2$	49.9	493
13	$53^{\circ} \mathrm{O}$	39^{6}	44.6 37.6	$48 \cdot 6$	$49 \cdot 6$	44.8	$43 \cdot 8$	$46 \cdot 6$	$45 \cdot 8$	$43 \cdot 1$	13	63.8	$49^{\circ} 2$	54.3	55.4	58.5	52.9	51.2	52.7	53°	$49^{\circ} 9$
14	45.1	$36 \cdot 6$	37.6	397	43°	38.4	37°	37.9	377	35^{8}	14	55°	$44^{1} 1$	48.4	51.6	52.7	$46 \cdot 8$	$43^{\circ} 2$	46.4	47.8	45°
15	47.8	37.1	$4{ }^{1.8}$	45.3	45^{-8}	$37 \cdot 2$	$40 \cdot 6$	$40 \cdot 6$	$40 \cdot 2$	$35^{\prime} \mathrm{I}$	15	59°	$43 \cdot 3$	$50 \cdot 6$	55^{8}	53°	43.4	$45 \cdot 7$	49	$46 \cdot$	41.7
16	47.7	32.1	37-3	$45 \cdot 6$	$46 \cdot 0$	$43^{\circ} 6$	35°	$40 \cdot 8$	$40 \cdot 8$	$42^{\circ} \mathrm{O}$	16	60.0	$39^{\prime \prime}$	55.4	54.1	$55 \cdot 6$	44.9	50.3	$48 \cdot 7$	493	44.0 38.8
17	56.0	433	$49 \cdot 8$	53.8	53.6	$47 \cdot 8$	48.6	$49^{\circ} 6$	$47 \cdot 8$	45°	17	52.5	$4{ }^{4 .} 4$	42.6	45.6	51.0 52.6	$42 \cdot 8$ 53	39.8	$41^{\prime 2}$ 47.5	$44^{4} 5$	$38 \cdot 8$ 51.8
18	52.8	$43 \cdot 1$	$47 \cdot 8$	50.8	$50 \cdot 8$ 5	43.1	45°	$46 \cdot 6$	47.2 47.8	$42 \cdot 1$	18	54^{5}	34.3 53	47.7 56	$48 \cdot 9$ 57	52.6 $60 \cdot 2$	53.5 54.6	45.0 53	$47 \cdot 5$ 53	510	5
19	53.9 50.3	41.9 40.6	49.7 45	51.6 48.6	51.6 456	$48 \cdot 9$ $42 \cdot 6$	$46 \cdot 0$ $42 \cdot$	$48 \cdot 1$ $43 \cdot 1$	$47 \cdot 8$ $42 \cdot$	$45 \cdot 1$ 40.6	19 20	$60 \cdot 8$ 61.5	53.1 48.7	55.8 52.3	$57 \cdot 6$ $58 \cdot 2$	$60 \cdot 2$ 58.6	54.6	53.6 $49^{.2}$	53. 53	55	53.7
20	50.3 49.8	$40 \cdot 6$ $42 \cdot 1$	$45^{\circ} 6$ 46.2	$48 \cdot 6$ 469	$45 \cdot 6$ $48 \cdot 1$	$42 \cdot 6$ $42 \cdot 1$	$42 \cdot 9$ $41^{\circ} \cdot$	43.1 $42 \cdot 9$	$42 \cdot$ 43.8	40.6 39	20	61.5 67	$48 \cdot 7$ 519	$52 \cdot 3$ 57.1	$58 \cdot 2$ 60.7	58.6 63.3 5.6	55.4 54.7 0.8	53.8	53.7	54.4	53.0 50.8 36.8
22	46.8	$39^{\text {I }}$	$45 \cdot 6$	$44 \cdot 4$	43.6	42.1	$44 \cdot 3$	$42 \cdot 9$	$42 \cdot 5$	$40 \cdot 8$	22	59.2	$40 \cdot 6$	50.2	55°	53.6	$40 \cdot 8$ 47.2	49 3 3	512 410	$49 \cdot 5$ 43	$36 \cdot 8$ 44.8
23	50.2	35.6	39.7	$46 \cdot 0$	$47 \cdot 8$	$36 \cdot 8$	38.9	$42 \cdot 8$	419	$35 \cdot 7$	23	$50^{\circ} \mathrm{I}$	$3{ }^{3} \cdot 9$	42.8 48	$47 \cdot$ 49.4	$46 \cdot 6$ 53	47.2 44.4	$38 \cdot 3$ 45.1	41.9 44.6	$4{ }^{4} 5$	$4{ }_{4}^{4} \cdot 8$
24	47°	31.3	$42 \cdot 3$ 46.6	44.3 47.8	$46 \cdot 2$ 44	415 36.3	41.8 44.4	$41^{1} 6$	$41^{\circ} 9$	38.4	24 25	$55 \cdot$ 55	43.1 38.1	$48 \cdot 6$ $46 \cdot 6$	49.4 46.9	53.8 47.7	44.4 397	$4{ }_{4}{ }^{1} \cdot 8$	$42 \cdot 8$ 42	43°	${ }_{3} 8.9$
25	$50 \cdot 0$ 48.3	$36 \cdot 1$ $35 \cdot 9$	$46 \cdot 6$ $42 \cdot 6$	47.8 44.6	$44 \cdot 6$ $46 \cdot 1$	$36 \cdot 3$ 38.7	44.4 403	44.9 40.6	$43 \cdot 3$ 40.1	34.9 37.8	25 26	55.1 53.2	38.1 37.6	$46 \cdot 6$ $44 \cdot 6$	$46 \cdot 9$ $50 \cdot 6$	43.6	39.7 43.4	41.2	$42 \cdot 9$ 419 4	49.8 39	39.6
27	$43 \cdot 9$	$34 \cdot 1$	$38 \cdot 3$	$42 \cdot 8$	$42 \cdot 6$	$34 \cdot 6$	$35 \cdot 8$	$38 \cdot 6$	38.9	33.7	27	58.5	34.9	51.6	$52 \cdot 6$	55.3 5.6	42.9 40.6	43.6 50	44.4 48.0	47.5 48.8	$41^{\circ} \cdot$ 39.5
28	45^{1}	$30^{\circ} 1$	41°	$42^{\circ} 9$	$44 \cdot 8$	$41 \cdot 1$	$39 \cdot 5$	41.8	$44 \cdot 5$	$39^{\prime} 9$	28	$60^{\circ} \mathrm{O}$	${ }^{40 \cdot 3}$	$55 \cdot 6$ $46 \cdot 3$	$55^{\circ} 9$ 47.8	55° 48.1	$4{ }^{4} \times 1.6$	$50 \cdot 0$ 40.9	41.7	$42 \cdot 2$	39.5 40.0
											29 30	54.0 52.6	36.1 36.0	$4{ }^{46} 3$	49	$4{ }^{4} \times$	48	41.8	427	43.9	$46 \cdot 8$
Means	$48 \cdot 0$	$36 \cdot 3$	42°	$45 \cdot 3$	$45 \cdot 6$	$40 \cdot 4$	$40 \cdot 2$	42.4	$42 \cdot 2$	38.8	Means	$55^{\circ} 4$	393	47.5	51.0	52.1	$44^{\circ} 9$	$43^{\prime 8}$	$45 \cdot 7$	$46 \cdot 5$	427

Readings of Thermometers on the Ordinary Stand in the Magnetic Pavilion Enclosure-continued. (The readings of the maximum and minimum thermometers apply to the twenty-four hours ending at 21^{h}.)																					
	Div. inub Themometers,											Dry-bulb Thermometers,					$22^{\text {b }}$	${ }_{\text {Wet-Rub Thermometer, }}^{\text {4t. above the Ground. }}$			
												$\underset{\substack{\text { max } \\ \text { mu }}}{ }$	${ }_{\substack{\text { mini } \\ \text { mumi }}}^{\text {min }}$			$15^{\text {b }}$		$\mathrm{g}^{\text {b }}$	Noon.	${ }^{\text {5 }}$	
May.											July.										
										$50 \cdot 6$						63.4		5	\cdots	6.8	
${ }_{2}^{1}$		44-8		57.2	476	45°	49^{1}	46.8	${ }_{47}{ }^{\text {I }}$	${ }^{\circ}$	2	66.3	$4^{8 \cdot 9}$	577		4	49.8	52.8	4	28	
3		36.9	$46 \cdot 3$	53°	56.1	49.6	$42^{\circ} 5$	$44^{5} 5$			3	66°	48.1	54.7	$56 \cdot 6$	51.8	52.6	$5 \cdot 6$	52.6	45.9	. 6
$\stackrel{4}{5}$	57.2	37.1	44.3	$49 \cdot 6$	$42^{2} 8$	37.7	39.7 438	$42 \cdot 8$	$39 \cdot 8$	37°	4	67°	48.2 $49^{\prime} 9$	7	60.2	$64 \cdot 6$	${ }_{59}^{56.2}$	54.6	54.	5578	53.1
5	57.2	${ }^{3} 5^{\prime} 1$	497	$4{ }_{54}$	6	45.6	$4{ }^{4}+8$	45°	44.	40.7	6	64.1	45.6	- 1	58.4	$5 \cdot$	55.9	57.6	53.8	53.8 53 5	53.8
7	$56 \cdot 1$	37	479	51°	$54 \cdot 6$	$42 \cdot 6$	$4{ }^{1 \cdot 8}$	44.5	44:8	36	7	6.0	51.4	56.4	56.8	59 9°	$55^{51} 5$	51.7	53.0 54.8	53.8 55	\%1.1
8	54.1	$35 \cdot 6$		$43 \cdot 5$	43.5	$38 \cdot 6$	46	40.8		$36 \cdot 6$		63.0 58.	$50 \cdot 7$ 51.3	$55 \cdot 3$. 2	$55^{\circ} 9$	- 5	3.1.	8	5.5	. ${ }^{2}$
10	53.2 56.0	$33 \cdot 6$ 30.4	39.1 476	47.5		41.3 40.8	37.6 42	${ }^{43.2}$		39.5	10	58.0 60.0	51.3	52.9	543	55.	${ }_{56}^{52}$	518.	$5{ }_{50} 5$	52.	53.1
$1{ }_{11}^{10}$	56	$36 \cdot 7$	4769	52.9	53.4	443	46•1	48.8	${ }_{45}^{45^{2}}$	3928	10	68.	53.3	57.3	543	66.7	55.5	53.8	53.7	58.0	54.8
12	59.4	44:	53.7	$56 \cdot 1$	57.6		49.4	$50 \cdot 8$	49.9			${ }^{71 \circ}$	50.6		65° 60.7	69.4 66.8	55°	55°	6.6	61.4	7
13	59	45.1 45.3	49.4 597	553.3	57^{2}	$52 \cdot 3$					14		$\stackrel{4}{ } \stackrel{3}{ } \cdot$	${ }_{56} 6.8$	64'2	$68 \cdot 5$	58.6	56.3	-	51.8	
14 15 15	67	45.3 48.2		63.3 654	67%	$52 \cdot 6$	53.6		53.8	${ }_{50}{ }^{4} \cdot 8$	14	928	3	56.7	642	647	$56 \cdot 4$	54.4	56.7	58.9	
16		48.3	56.1	65.5	$65 \cdot 2$	51.4	54.8				$1{ }^{16}$		53.5		${ }^{64.4}$		56.3	54	58.6 62.6	60.3	53.1 58.8 5
17 18	65°	49.9	$52 \cdot 6$	590.	$\cdot 6$	54.1	518 57.6	56.1			17 18	${ }_{6}^{67}{ }_{6}{ }^{\circ} \mathrm{C}$	54.7	5	56.1	56.6	54	557	55.7	549	53.6
18 19	${ }_{72}^{70} 5$	${ }_{512}^{51 .}$	${ }^{59} 1.8$	$66 \cdot$	-	59°	59°	-8	6r.8		19	7	$47 \cdot 9$	$59 \cdot 6$	${ }_{65} \cdot 1$	69.1	57.9	53	56.3	$60 \cdot 7$	
20	$76 \cdot$	54.4	71.6	706			64.5	$63^{2} 2$	63.4	57.8	20	67.8	52.9 58. 58	$62 \cdot 1$ 63.4	63.8 66.6			${ }^{57}{ }^{57}$	59.9	$60 \cdot 8$.5
21	65°	56.7	58.3 $56 \cdot 3$	59.2 69			$56 \cdot 7$	57.9	58.9 $66 \cdot 2$		21	73.8 68.8 68.	58.3	S 4	66.6	${ }_{64} 8$	$59 \cdot 6$ 55	57	578	59.8	48
22 23 23		${ }_{53}{ }^{2} \cdot 8$	${ }_{68 \cdot 2}$	69.8 7	5	$60^{\circ} 7$	${ }_{59} 5$	56.8	55	53	22 23	67.8	54.4	60^{\prime}	$62 \cdot 1$	63.6	$56 \cdot 6$	56	$56 \cdot 1$	5	
24	$63^{2} 2$	48.6	58.0	6	57.6	48.6	53.8	58.8		${ }_{46}$	24	63.	47.4	58.7	58.4 56.6	${ }^{57}{ }^{5} \mathbf{6}$	54.8	53	53.8	54	6
25 26	59.1 676	47.0 456	$\cdot 5$	53.3	57.5 65.8	48.6	$46 \cdot 3$ 48.8	$48 \cdot 8$ 55.1		45'5	25	67. 63°.			56	2.6	56		543		4
27	67°	48		59	63.6	55^{8}	54		56.8		27	67	49.8		61.5	64	58.7	56	56.7		$56 \cdot 9$
28		$50^{\circ} 7$	63.7		719	58.6	57.8								72.2	73.6 68.6 18	62				
31	61.2					53.6		$4^{\circ}{ }^{\circ}$			31	74°	8	62.6	68.4		63°			61%	
Means	63.3	$45 \cdot 6$			59.5			52.3	52.6	$4^{8 \cdot 3}$	Mean	67.			$61 \cdot 2$	63	56		56.		
Ju											August.										
${ }_{1}^{1}$		49.1		63.5	65°	54^{\prime}		57.8	56.8			$73^{\circ} \mathrm{I}$	49.8	64°	$68^{\circ} \mathrm{O}$	9.7	$60^{\circ} 2$		8 7		54°
2	$70^{\circ} 2$		57.6	632	677	54.8	55.8	58.8	59	5		67° 77°	55^{59}	64.0	60.9 68.9	64.6 66.7	$\begin{aligned} & 560 \\ & 56 \cdot 6 \end{aligned}$		57\%	58.9 58	
3		$4{ }^{48 \cdot 6}$		$70 \cdot 6$	69.7	578		58		53 52 5		72. 737	5'3	63. 63.8	68.9 64.8	$66^{6 \cdot}$	56.4	57°	60.4	58	54.4 56.0
5	64.8		57.1	61.	61.6	55	55°	59	58.8			72.2	$55^{\prime 2}$	${ }_{61}{ }^{4}$	64.6	617	57°	5	59.4	5	$56 \cdot 8$
6	$72 \cdot 7$			677	$67 \cdot 9$	57	573	$61 \cdot 1$	61.5	55	6	68.2	.	60.6		66.	57	$55 \cdot 8$	50.8	8	. 6
7	$77^{7.7}$	${ }_{56}^{56 \cdot}$	${ }^{61.9} 6$	64.2 72.3	. 8	$60 \cdot 6$ 63.6	61	63.7 65.6	${ }^{67.8}$	62	7	73.3 67	49.1 58.8		69.8	66.9 64		$5{ }^{57}$	58.8	59	
		5	\%		3.8	63.6	62.4 63.2	65.6	$66 \cdot 8$	62	8	${ }_{67} 67^{\circ}$		58.0	597	${ }^{64} 18$	59.6	5	58.1	61.0	
10	$65 \cdot 5$	$58 \cdot 6$	$60 \cdot 1$	$6_{2} \cdot 1$	${ }_{61} 1$	61.7	59.8	60.8	$60 \cdot 1$		10	73.1	52	$59 \cdot 6$	66.9	77.9	57.5	$55 \cdot 8$			
11 12	70.9 71.3	60	$60 \cdot 6$ 66.0	64.8 $69 \cdot 2$			61	62.2 64.3	63		11	73.1 77		S9, ${ }^{59}$	$67 \cdot 3$ $66 \cdot 3$		60		59.6	620.4	
12		55°		7	7^{6}	55°	$60 \cdot 2$	61.8	60.8	5	13	64.	54.3	$61 \cdot 2$	$60 \cdot 2$	62.4	6	5		$6{ }^{12}$	
14	67.3	46	596	63.9	$62 \cdot 3$	57.1	$50 \cdot 8$	55.4	53.6		4	75°		$66 \cdot 2$,			${ }^{6} 6^{4}{ }^{2}$	6.8 6.1 6	66°	
15 16		46	59.6	${ }^{63}$		${ }_{5}^{52}$	53.8				15 16	74 75 75	S0.3	\% 0	+	71.4			${ }_{61} 1$	60	
17	$71^{1 / 2}$	4.7	53.6	57	68.1	56.8	516		$6{ }^{6} 3$	$5{ }^{\circ}$	17	70°	53.3	$6 \mathrm{r} \cdot 8$	68	62.3	60	58.8	6	60	8.8
18	74	54.6	${ }^{61.6}$		\%	58.6	57.5	61.5		$55^{4} 4$	18	${ }^{73}{ }^{1 .}$	2.1.			68.7	60	57	57.9		
19	-	$50^{\circ} 1$	70.6	76.9	80	${ }_{6}{ }_{6}{ }^{4} 2$	59.7	64.8	63.9	60	20	74.0	59.4	65. 66.6	67.7 678	72.4 60.6	59		599\%	64	
21	$80^{8.2}$ 80.0	$58^{\text {. }}$	75.3			${ }^{3} \cdot 6$	62	63.0	$60 \cdot 8$	59	2		58.	643	677	$70 \cdot 4$	60	57	59.4	60	56.1
22	7	59,	${ }^{2}$	$65 \cdot 6$	$64 \cdot 8$	56.8	57.8	57°	5	5	22	66.0	$52 \cdot 1$,	59	63.9		55	56.8	57	
23 24 24	70	51.1	$62 \cdot 1$ $58 \cdot 8$	${ }^{65.6}$	- ${ }^{\circ} \mathrm{O}$	57	55.6		555.6		24	70.2	49.1.	60.3		63	58	${ }^{53}$	56:3	${ }_{61} 5$	
24 25	67	52.6	62.8	57	54.8	$55^{\circ} 6$		59.8	54:3	54	24	70	51.6	62.4	63	66	60	5	60^{2}	61	
26	6	49	537	591	59.2	54.9	49	52.1		49	26	70°	57.1		60°	67°	57.6	63.8	-	57	
27	54.8	45^{1}	5^{572}			55	50:8		55		27	66.	52.6	58.8 6.5 6.5	63	61.8	57	51.	8	${ }_{58} 5$	
28 29	690.			65.9	64.6	$5{ }_{5}^{57}$			56.8	53	28 29	66.	50.1 48.9		${ }_{6} 6$	$6{ }_{4}$	54	5	57.3	55	53
30	67°	50	57°	617	62.4	$54 \cdot$	52.7	55^{\prime}	543	53.	30		53.1	61.2	63.6		56	53	56.8	57.8	
											31	66.8	51.2		$63 \cdot 6$	$64 \cdot 8$	56.8	53^{8}	56.8	57.8	$55 \cdot 8$
				55.8											65°				59		

Readings of Thermometers on the Ordinary Stand in the Magnetic Pavilion Enclosure-concluded. (The readings of the maximum and minimum thermometers apply to the twenty-four hours ending at 21^{1}.)																					
	Dry-Bulb Thermometers, 4 ft . above the Ground.						Wet-Bulb Thermometer, +ft . above the Ground.				$\begin{gathered} \text { Days } \\ \text { ot hos } \\ \text { othoth. } \\ \text { Mont. } \end{gathered}$	Dry-Bulb 'Ihermometers 4 ft . above the Ground.						Wet-Bulb Thermometer, 4 ft . above the Ground.			
	$\underset{\substack{\text { Ma } \\ \text { mu }}}{ }$	$\begin{gathered} \text { Mini- } \\ \text { mum. } \end{gathered}$	$9^{\text {b }}$									Maxi-									
September.											November.										
$\stackrel{1}{1}$	69		59	63.	$66 \cdot 5$	53°	52.	53.9					$4 \mathrm{I} \cdot 8$		50\%	$49^{\circ} \mathrm{C}$	$\cdot 8$	6.	$46^{\circ} 4$	43.6	9°
2	69.5	49.9	59.7	$63 \cdot 1$	$68 \cdot 3$	63.8	58.2	59.8	$62 \cdot 5$	60		54.9 +8.8	38	$4{ }^{1} 5$	$45^{\circ} 4$	419	38.2	38.5	$40 \cdot 1$	$39^{\circ} 5$	35.8
3	66.3	52.I	58.6	62.4	$65^{\prime \prime}$	54.9	52.8	$53 \cdot 8$	$55 \cdot 8$	$50 \cdot 0$		+78	34.7	$40 \cdot 8$	$45 \cdot 5$	42.I	$40 \cdot 7$	38.3	419	41.7	39.9
4	60.1	49.7	55.1	58	59.3	55°	$50^{\circ} 0$	52.3		$50 \cdot 8$	4	$46 \cdot 5$	$32 \cdot 1$	39.6	44.2	44.8	$32 \cdot 7$	$38 \cdot 8$	42.2	$40^{1} 1$	32.7 36.8
5	59.2 60.3	52.3 52	53	56	57.8 57.8	$55^{\circ} 4$	$51 \cdot 3$	51.8	52	515	5	45.9	27.	31.6	36.9	44.7	38	$30 \cdot 8$ $36 \cdot 8$	-	$4{ }_{4}^{4 \cdot 3}$	-8
6	60	52	55.6	57	57.8	54	51.7	52	52.8	$50 \cdot 7$		51.6	28	37.6	42.9	49^{-8}	50.3	$36 \cdot 8$	$4{ }^{1 \cdot 8}$	$48 \cdot 1$	9
7	61 65	50.4 53.2	$56 \cdot 5$ 59	57.0 61.8	56.6	54.6 57.2	53.7 54	54.7 55.6	54.2 55.8	53.6 54.9	7 8	$50 \cdot 3$ $50 \cdot 7$	41° 35	$46 \cdot 9$ 42	$48 \cdot 9$ 488	$48 \cdot 3$ 44	45^{\prime} 35^{2}	$42 \cdot 3$ $40 \cdot 1$	44	44.5	34.3
9	61.	$46 \cdot 7$	54.7	54.8	58.4	51.1	51.6	503	52.0	48.8	9	47.5	$30 \cdot 5$	$36 \cdot 2$	$43 \cdot 6$	$43 \cdot 1$	$35^{\circ} 6$	$34 \cdot 8$	$40 \cdot 3$	39.8	33^{8}
10	$65 \cdot 6$	39.1	$55^{\prime} 1$	63.6	63.2	$52 \cdot 8$	51.6	55^{2}	55.5	51.6	10	+70	30.3	34.6	$44 \cdot 3$	44.9	44.6	32.9 39	39.8	$38 \cdot 9$	43.4
11	67°	51.3	58.6	64.6	$65^{\circ} 2$	53.4	$55^{\circ} 4$	583	57.5	53.0	11	50	$36 \cdot 6$	42.9	$40 \cdot 2$	41.6	$36 \cdot 6$	39.8	38.8	$39 \cdot 7$	35^{6}
12	$65^{\circ} \mathrm{I}$	$49 \cdot 7$	$56 \cdot 2$	61.6	$60 \cdot 9$	50.6	52.9	$55 \cdot 9$	55^{\prime}	$46 \cdot 8$	12	+6.3	28.4	32.5	44^{6}	43.7	$46 \cdot 3$	31.8	38.6	39.7	44°
13	63.8	$45^{\circ} 7$	54.4	$61 \cdot 2$	$6 \mathrm{I} \cdot 8$	52.6	$49 \cdot 5$	52.	523	48.6	13	$50 \cdot 6$	$45 \cdot 3$	$49^{\circ} 4$	49°	$46 \cdot 3$	48.7	46:1	$46 \cdot 8$	44.8	$47 \cdot 7$
14	$60 \cdot 1$	50.3	53.6	$55 \cdot 6$	$59^{\circ} 2$	55.5	53.3	53.5	54°	53.9	14	516	$42 \cdot 8$	$47^{\circ} 4$	50°	$50 \cdot 6$	$42 \cdot 8$	45.6	$47 \cdot 5$	$46 \cdot 4$	41^{6}
15 16	65°	51.8	57°	613	63.7	$56 \cdot 9$	56.7	59.5	$60^{\circ} 4$	$55 \cdot 9$	15	$50 \cdot 0$	$37 \cdot 1$	$40 \cdot 5$ 34	$46 \cdot 6$	44.8 40.6	39^{6}	$39 \cdot 8$ 31.8	44.3 36.2	$42 \cdot 3$ 35	37.3
17	64 $61 \cdot 1$	52.3	57	59.6	59.9	55.6	5	57.8	54	53.8	16 17	37°	23.4	34.8 24	40.4 33.6	40.8	33 3	24.5	31.0	32.9	$\cdot 7$
18	64.9	51.2	60.8	63.9	63.8	51.6	57.0	$58 \cdot 1$	58	51°	18	44.9	31.6	$36 \cdot 5$	41.6	$44 \cdot 6$	42.4	$33 \cdot 7$	38.6	39.7	$39^{\prime 2}$
19	$65 \cdot 7$	48.5	61.6	$64 \cdot 5$	61.5	51.6	57.5	56.4	4	49^{1}	19	43°	33.	36.5	38.9	$39^{\circ} 5$	$36 \cdot 6$	33^{2}	$34 \cdot 8$	33.6	$3 \cdot 1$
20	58.1	$43 \cdot 0$	52	56.5	54.6	$46 \cdot 8$	$48 \cdot 8$	498	48.5	44.3	20	39°	31.8	$36 \cdot 1$	$38 \cdot 7$	$36 \cdot 5$	31.8	35.4	37.4	32.3	$30 \cdot 1$
21	62.1	40	514	578	$60 \cdot 2$	3 6	460	49^{8}	51.8	$50 \cdot 9$	21	40^{\prime}	27°	30°	$33 \cdot 2$	$40 \cdot 6$	34^{6}		32.3	$37 \cdot 2$	33.3
22	62.3	43.9	$54 \cdot 6$	61.3	$6_{1} 4$	52.9	51.	54.7	54.9	$50 \cdot 7$	2	36	24.1	27.8	$30 \cdot 7$	35.5	25^{2}	27.6	30.3	$33 \cdot 8$	25.2 33.9
23	64.0	39.3	547	$59^{\circ} 6$	${ }^{61} 9$	553	$50 \cdot 6$	52.8	54.8	$50^{\circ} 4$	23	37.6	22.3	29.3 37.8	$36 \cdot 1$	37.4	34.4	$2{ }^{2 \cdot 1}$	35.5 38	$36 \cdot 3$ 38.0	33.9
24	65.3	$49^{\circ} \cdot 6$	55°	59.6	63.7	$49^{\circ} 6$	51.7	53.0	55.5	48.9	24	42.0	$34^{1 .}$	$37 \cdot 8$	41.2	41.1 38.8	38.5	36.4	$38 \cdot 7$ 37	38.0	37.2 $32 \cdot 0$
25 26	65° 69	$48 \cdot 1$ 49.1	${ }_{56} 5 \cdot 4$	$60 \cdot 7$ 65	59.6 63.8 70.	$55^{\circ} 8$ 57	$56 \cdot 1$ 54.8	57.9 61.1	57.7 58.6	$55 \cdot 1$ 54.7	25 26	39 38.6	32.9 27.2	37.2 29	39.6 37.8	$38 \cdot 8$ $37 \cdot 1$	32.9 33.8	$35^{\circ} 9$ 29	37.3 36.3	36.3 34.8	$32 \cdot$ 33 3.3
26	69.1 71.2	49'1	$56 \cdot 1$ 588	65.7 66.6	63.8 70.6	57.0 53.2	$54 \cdot 8$.	$61 \cdot 1$	$58 \cdot 6$ $60 \cdot 8$	54’7	26	38.	$27 \cdot 2$	29.	37.8	37.1 40.9	33.8 38.9	29.4 40.8	36.3 418	34.8	33.3 38.7
28	$75 \cdot 2$	43	60.4	72.4	73.7	59.9	58	64.7	64.6	$58 \cdot 7$	28	8	$36 \cdot 6$	$37 \cdot 6$	39.4	$41^{\circ} \mathrm{O}$	$36 \cdot 6$	35.8	37°	38.3	35.8
29		55.5	66		$6{ }^{6} \cdot 1$	$57^{\circ} \mathrm{L}$	5	61-2	$60 \cdot 7$	56.6	29	37.8	28.8	$32 \cdot 6$	32.8	$36 \cdot 6$	34.6	31.6	31.8	34.8	33.3
30	62	51.	56	$60 \cdot 7$	$62 \cdot 1$	52.5	54.4	57	57.8	$52 \cdot 2$	30	$4^{2} \cdot 6$	34.1	39^{1}	41	$4^{2 \cdot 1}$	$40 \cdot 6$	37.8	39^{8}	2.6	39
ns			57.0	I^{12}	62.2	54.3	53.6	55°	56.0	52.1	Means	453	32.7	37.4	41.6	$42 \cdot 3$	38°	35.8	39	39.2	
Octorer.											Decemper.										
$\stackrel{1}{1}$	71	49	59.4	$70^{\circ} 1$	$65^{\circ} 9$	$62 \cdot 2$	$58^{\circ} 7$	63.2	$62 \cdot 6$	60	1	43.7	$40^{\circ} 1$	$42 \cdot 6$	$43^{\circ} 6$		$42^{\circ} \cdot 6$	$42^{\circ} 2$	$42 \cdot 8$	42.9	42.0
2	73.2	55°	61.4	$70 \cdot 7$	68.8	58.2	59.6	$63 \cdot 8$	61.8	55.6	2	$4{ }^{2} 6$	$39^{\text {I }}$	414	$41 \cdot 2$	$40 \cdot 8$	$39^{\circ} 4$	$40 \cdot 8$	$40 \cdot 3$ 8.8	39.8 38.8	$38 \cdot 8$ 39
3	61.9	$51 \cdot 3$	55.8	$56 \cdot 4$	$60 \cdot 7$	51.6	$50 \cdot 8$	47.2	50.0	47°	3	$40 \cdot 9$	$37 \cdot 6$	$39^{\prime} 6$	$40 \cdot 2$	$40 \cdot 0$	$40 \cdot 6$	38.9	$38 \cdot 8$	$38 \cdot 8$ 4.8	$39 \cdot 8$
4	$65^{\circ} 4$	47.2	55.5	63.5	63.8	56.5	53.0	$57 \cdot 3$	$56 \cdot 6$	$54^{\circ} \mathrm{I}$	4	$48 \cdot 6$	$40 \cdot 1$	44.1	47.8	$45 \cdot 6$	$47 \cdot 7$ 50	$43 \cdot 7$ 48 8	$45 \cdot 7$ 48.9	43.8 48.8	47.6 47.8
5	67.9	$48 \cdot 1$	$56 \cdot 0$	63.6	65.4	$60 \cdot$	53.7	58.5	58.9	57.2	5	53.9	$47 \cdot 6$	$51^{1} 7$	52.6	51.7	$50 \cdot 1$ 4.6	$48 \cdot 7$ 45	48.9 47		$47 \cdot 8$ $42 \cdot 8$
6	65.2	511	54.6	${ }^{61} 7$	63.6	51.7	52.8	$56 \cdot 1$	57°	51°	6	5	43.6	$46 \cdot 1$	$49 \cdot 6$	$4{ }^{4.6}$	$44 \cdot 6$	45.3 46.8	$47 \cdot 8$		$42 \cdot 8$ $42 \cdot 8$
7	64.2	$50 \cdot 3$ 52	$56 \cdot 8$ 57.4	64.2 61.6	60'5	56	56	58.2	$55^{\circ} 8$	55.6	7	51	$40^{\prime} 1$	$47 \cdot 6$ $46 \cdot 3$	$50 \cdot 3$ 49.6	$48 \cdot 4$ 49 1	44.4 47.6	$46 \cdot 8$ 45	47.9 45	$4{ }^{46 \cdot 3}$	$42 \cdot 8$ $46 \cdot 5$
9	59.6	$52 \cdot 1$	$56 \cdot 6$	$56 \cdot 9$		54.8	544	53.8	55.5	53.0 53.8	9	$5{ }^{5} 1.8$	$4{ }_{4}{ }^{4} \cdot 1$	48.6	49	$50 \cdot 3$	493	46%	$46 \cdot 9$	$48 \cdot 4$	$46 \cdot 8$
10	$67 \cdot 1$	51	$57 \cdot 6$	64.4	$60 \cdot 8$	51.0	$52 \cdot 6$	55.8	54.7	50.6	1	51.1	$46 \cdot 1$	$46 \cdot 6$	$48 \cdot 6$	48.4	$50 \cdot 0$	$45^{\circ} 4$	$46 \cdot 8$	$47 \cdot 3$	$47 \cdot 8$
11	$69 \cdot 2$	$4{ }^{8.6}$	59.9	$67 \cdot 2$	617	$56 \cdot 1$	57.4	58.2	$57 \cdot 7$	55.8	1	53.0	$46 \cdot 6$	$49 \cdot 5$	51.	$49 \cdot 6$	$46 \cdot 6$	$48 \cdot 3$	$48 \cdot 6$	$48 \cdot 6$	$45 \cdot 7$
12	58.0	$48 \cdot 6$	$49 \cdot 1$ 5.6	49.5	49.7	51.8	48.0	$48 \cdot 6$	48.9	$50 \cdot 8$	12	50°	$45^{\circ} 2$	48.7	493	47.7	$46 \cdot 1$	$46 \cdot 8$	47.6	$46 \cdot 4$	44.6
13	58.2	493	$56 \cdot 6$	54.5	$52 \cdot 8$	50°	55.5	52.	48.8	$46 \cdot 8$	3	52.7	45°	$49 \cdot 4$	$50 \cdot 8$	49.6	49^{6}	$46 \cdot 8$ 46.7	$48 \cdot 0$ 47.8	45^{\prime} 47	$46 \cdot 6$ 49.0
14	53.0	$49 \cdot 1$	50.3 48.6	$50 \cdot 9$	49.9	52.6	$46 \cdot 1$	$47 \cdot 6$	$48 \cdot 4$	$48 \cdot 9$	14	52.0	47.3	$48 \cdot 6$	$50 \cdot 6$	48.8 500	49.6	$46 \cdot 7$ 48	$47 \cdot 8$ $49^{\circ} 9$	$47 \cdot 3$ 47	49 4.8 4.8
15 16	56.1	$44^{1.1}$	$48 \cdot 6$ 50	$50 \cdot 5$	55.8	47.4 51	45.9	$46 \cdot 9$	52.3	$47 \cdot 1$	15	51.9	$45^{\circ} 6$	$49^{\circ} 6$	$50 \cdot 6$	50.0	$45 \cdot 6$	$48 \cdot 8$ $52 \cdot 5$	49.9 46.7	47% 47	$43 \cdot 8$ 46.9
16	$60 \cdot 0$ 60.6	43.2 46.9	50.8 55	58.9 59.6	57.4 56.6	51.6 53.6	50.8	54% 560	$52 \cdot 5$	9 8	16	55.0 52.0	42.1 45	53.7	$48 \cdot 6$ 47	51.1 47.8	517 45	$52 \cdot 5$ 43.8	$46 \cdot 7$ 44	47°	$46 \cdot 9$ 439
18	60.6	$45 \cdot 1$	53.6	57.8	57.1	56.6	514	53.2	53^{1}	55.8	18	$46 \cdot 1$	$40 \cdot 1$	41.3	44.7	45°	41.2	$39^{\circ} 9$	418	42	393
19	58.5	48.9	51^{6}	$56 \cdot 1$	55.1	48.9	$49^{7} 7$	51.8	503	$46 \cdot 9$	19	$5 \mathrm{I}^{\circ} \mathrm{O}$	39.3	44.9	49.6	50.9	467	44.4	47.8	49.6	43.9
20	52.8	44.4	$45^{\circ} \mathrm{P}$	51.2	$50 \cdot 7$	$46 \cdot 6$	$44^{\circ} \mathrm{O}$	$46 \cdot 9$	$46 \cdot 2$	$44^{\text {- }}$	20	50°	33.1	39^{-2}	47.5	49^{8}	49.4	37.8	$46 \cdot 5$	$48 \cdot 1$	$47 \cdot 6$
21	57.9	423	47.8	54.6	$56 \cdot 6$	52.5	$46 \cdot 7$	$5 \mathrm{I} \cdot 6$	517	$50 \cdot 8$	21	$50 \cdot 3$	$46 \cdot 1$	$49 \cdot 4$	49°	$49^{\prime \prime}$	$46 \cdot 2$	$47 \cdot 8$	$47^{\circ} 8$	47.3	$37 \cdot 1$
22	55°	47°	$50 \cdot 6$	52.8	$54 \cdot 1$	47°	48.8	$50 \cdot 8$	50.8	$46 \cdot 7$	22	$46 \cdot 2$	$34 \cdot 3$	$38 \cdot 1$	42.6	$4{ }^{4}$	37.8	37.8 38.8	$40 \cdot 9$ 43.8		
23 24	52.9	39^{6}	50.2	51.1	51.1	$46 \cdot 6$	$49 \cdot 8$	$48 \cdot 8$	48.6	$46 \cdot 3$	23	49°	$35 \cdot 4$	$40 \cdot 1$	45.8	47.6	49°	38.8 50.8	$43 \cdot 8$ 50.6	$45 \cdot 8$ 50.2	$47 \cdot 6$ $42 \cdot 6$
24 25	53.7	$45^{\circ} 6$	$50 \cdot 1$	52.2 56.5	111 55.6		48.0	49.1	47.8	$48 \cdot 1$	24	$53^{\circ} \mathrm{O}$	44.3	52.6 41.2	$52 \cdot 3$ 44.9	516 453	44.7 41.6	$50 \cdot 8$ 39.4	50.6 413	50.2 418	$42 \cdot 6$ 39
25 26	56.9 58.5	48.9 50.7	52.4 54 6	$56 \cdot 5$ 56.8	55.6 54.6	51.6 53.3	51.0 52.6	$52 \cdot 9$ 53.3	$52 \cdot 8$ $52 \cdot 8$	$50 \cdot 7$ $52 \cdot 2$	25 26	$46 \cdot 0$ $43 \cdot 5$	$40 \cdot 9$ 39	$41 \cdot 2$ 40.6	44.9 429	$45 \cdot 3$ 43 1	41.6 41.6	39.4 38.7	$41 \cdot 3$ 39.8	$41 \cdot 8$ $39 \cdot 7$	$39 \cdot 7$ $40 \cdot 4$
27	55°	$50 \cdot 1$	52.7	$54 \cdot 6$	524	51.3	50.8	$50 \cdot 9$	$49 \cdot 8$	493	27	43.2	$33 \cdot 1$	33.6	$36 \cdot 4$	$36 \cdot 1$	$33 \cdot 6$	$3{ }^{1} \mathrm{O}$	32.3	33.8	$32 \cdot 3$
28	61.4	$47^{\prime 2}$	$50 \cdot 6$	$60 \cdot 2$	58.4	47.2	$50 \cdot 3$	$56 \cdot 1$	$55 \cdot 1$	47°	28	37.8	${ }^{27} 1.1$	28.6	$30 \cdot 2$	$36 \cdot 6$	37.6	28.	29.6 41.5	33.8	34.4 $30 \cdot 0$
29	$53^{\prime} \mathrm{I}$	44.9	$49^{\circ} 2$	50.7	52.2	49.1	$48 \cdot 9$	$50 \cdot 1$	509	47^{-8}	29	$46 \cdot 0$	37.2	$40 \cdot 1$	44.6	45^{6}	415 34	39.7 37 3	41.5	41.6 4.0	39° 3 3
30 31	52.0 50.8	$47 \cdot 1$ $44^{\prime 2}$	$50 \cdot 6$ 45.6	51.6 48 8	$50 \cdot 5$ 48	47.4 46.6	$48 \cdot 1$ $43 \cdot 0$	$48 \cdot 6$ 45%	$47 \cdot 5$ 44.6	44.5 42.6	30 31 1	44.3 41.8	34.9 28.1	39° 35°	$43 \cdot 6$ 404	43.4 417	34.9 $41 \cdot 4$	37.8 35	412 38.8	41° 39	$33^{\circ} 7$
Means	59.8	$47^{\circ} 9$	53.1	57.4	56.7	52.1	51.2	53.0	52.7	50.4	Means	48.4	$40 \cdot 5$	44°	$46 \cdot 3$	$46 \cdot 5$	44.5	42	44^{2}	$44^{\circ} 2$	42

Excess of Mean Monthly Readings of Thermometers placed in a Stevenson's Screen above those of the correspondiug Thermometers on the adjacent Ordinary Stand in the Magnetic Pavilion Enclosure in the Year igio.
(The readings of the maximum and minimum thermometers apply to the twenty-four hours ending at $2 \mathbf{I}^{\mathrm{h}}$.)

MONTH,rgro.	Dry Bulb Thermometers 4 ft . above the Ground.						Wet Bulb Thermometer 4 ft . above the Ground.			
	Maximum.	Minimum.	$9^{\text {h. }}$	Noon.	$15^{\text {b }}$.	$21^{\text {h }}$.	$9{ }^{\text {h. }}$	Noon.	$\mathrm{r}^{\text {h }}$.	${ }_{21}$.
	\bigcirc	-	-	\bigcirc	\bigcirc	-	-	-	-	。
January	+ $0 \cdot 1$	+0.5	+0.1	+0.1	$+0.2$	+0.2	$+0.2$	+ 0.2	$+0.2$	$+0.2$
February	- 0.2	+ 0.6	$+0.2$	$\bigcirc \circ$	$\bigcirc \cdot 0$	+ 0.4	+ ${ }^{\circ} \mathrm{I}$	- 0.1	-0.1	+ $0 \cdot 3$
March	- 0.4	+ 0.8	+ 0.1	+ 0.1	$+0.1$	+ 0.5	$\bigcirc \circ$	$\bigcirc \circ$	$0 \cdot 0$	+ 0.4
April.	$1 \cdot 1$	+ 0.6	-0.3	- 0.4	-0.3	+0.2	-0.3	- 0.4	-0.3	+ 0.2
May.	- I'3	$+0.6$	-0.4	- 0.5	- 0.3	+0.3	-0.4	- 0.4	- 0.1	+0.3
June.	- 23	+ 0.6	-0.8	- 0.9	-0.7	+0.3	-0.5	-0.5	-0.4	+ 0.2
July..	- 19	$+0.5$	-0.6	- 0.6	- 0.7	+ $0^{\circ} \mathrm{I}$	- 0.4	-0.4	- 0.5	+ $0 \cdot 1$
August.	- 2.5	+0.7	-0.6	-0.9	-0.8	+ 0.2	-0.5	-0.7	-0.5	+ 0.1
September ..	- 1.3	+ 0.6	-0.3	-0.4	-0.4	+ 0.3	-0.4	-0.3	-0.3	+ $0 \cdot 1$
October	- 0.8	+ 0.7	- 0.2	- 0.2	$-{ }^{-1}$	+ 0.2	$\bigcirc \cdot 1$	- 0.1	$\bigcirc \cdot$	+ 0.2
November.	-0.3	+ 0.8	+ 0.2	$0 \cdot 0$	+ 0.2	+ ${ }^{\circ} 5$	+ 0.2	$\bigcirc \cdot$	+ 0.1	+ 0.4
December	+ $0 \cdot 1$	+ 0.6	+ 0.1	$\bigcirc 1$	+ $0^{\prime} 1$	+ $0 \cdot 3$	-0.1	-0.2	$0 \cdot 0$	+ 0.2
Mean	- 1\%	+ 0.6	0.2	-0.3	- 0.2	+ 03	0.2	- 0.2	-0^{2}	$+0.2$

Amount of Rain Collected in each Month of the Year igio.

MONTH, 19 I .	Number of Rainy Days ($\mathrm{o}^{\text {In }} \cdot \mathrm{cos}$ or over).	Monthly Amount of Rain collected in each Gauge.							
		Selfregistering Gauge of Osler's Anemometer. No. .	Second Gauge at Osler's Anemometer.	$\begin{aligned} & \text { On the roof } \\ & \text { of the } \\ & \text { Octagon Room. } \end{aligned}$	On the roof of the Magnetic Observatory	On the roof of the Photographic Thermometer Shed.	Gauges partly sunk in the ground.		
							In Magnetic Pavilion Enclosure.	In Observatory Grounds.	In Magnetic Pavilion Enclosure
			No. 2.	No. 3.	No. 4.	No. 5.	No. 6.	No. 7.	No. 8.
		in.							
January	15	$0 \cdot 799$	0.843	I '194	1.270	1.603	1.722	1.652	1.683
February	24	1.348	$1 \cdot 194$	1.767	$2 \cdot 110$	$2 \cdot 647$	2.687	$2 \cdot 611$	2.651
March	10	0.469	0.481	$0 \cdot 742$	0.904	1.053	$1 \cdot 103$	$1 \cdot 020$	1.046
April.	16	1723	1749	2.039	$2 \cdot 400$	$2 \cdot 658$	$2 \cdot 619$	2.660	$2 \cdot 585$
May	19	1.332	I 579	$1 \cdot 872$	2.066	$2 \cdot 184$	$2 \cdot 243$	$2 \cdot 201$	$2 \cdot 187$
June.	13	1.386	1. 548	1.851	$2 \cdot 023$	2.089	$2 \cdot 077$	$2 \cdot 108$	$2 \cdot 073$
July..	18	$2 \cdot 207$	2.455	. ${ }^{\circ} 008$	3.320	$3 \cdot 504$	3.517	3.477	$3 \cdot 463$
August	17	1.787	1.848	$2 \cdot 138$	$2 \cdot 302$	2.410	2.430	$2 \cdot 388$	$2 \cdot 378$
September	3	0.405	0.457	$0 \cdot 588$	0.674	0.748	$0 \cdot 740$	0.746	0.730
October	14	1.016	$1 \cdot 111$	1.446	1.669	$1 \cdot 777$	1.813	1.698	I 772
November	17	2.026	$2 \cdot 179$	$2 \cdot 592$	2.998	3.291	3.569	3.254	$3 \cdot 422$
December	19	$2 \cdot 124$	$2 \cdot 246$	$2 \cdot 414$	$2 \cdot 968$	3•308	3•544	3:31	3•397
Sums.	185	$16 \cdot 622$	$17 \cdot 690$	21-651	$24 \cdot 704$	$27 \cdot 272$	$28 \cdot 064$	$26 \cdot 946$	27 387
$\text { Height of } \quad\left\{\begin{array}{c} \text { above the } \\ \text { ground } \end{array}\right.$	$\} \cdots$	$\begin{gathered} \mathrm{ft.} \mathrm{in} . \\ 50.8 \end{gathered}$	$\begin{aligned} & \text { ft. in. } \\ & 50.8 \end{aligned}$	$\begin{aligned} & \text { ft. in. } \\ & 38.4 \end{aligned}$	$\begin{aligned} & \text { ft. in. } \\ & \text { 21. } \end{aligned}$	$\begin{aligned} & \text { ft. in. } \\ & \text { 10.0 } \end{aligned}$	$\begin{aligned} & \text { fr. in. } \\ & 0.5 \end{aligned}$	$\begin{aligned} & \text { ft. in. } \\ & 0.5 \end{aligned}$	$\begin{aligned} & \text { ft. in. } \\ & \text { I. } 0 \end{aligned}$
$\text { Surface } \quad\left\{\begin{array}{c} \text { above mean } \\ \text { sea level } \end{array}\right.$	\} \ldots	$\begin{gathered} \text { ft. } \\ 205.6 . \end{gathered}$	$\begin{gathered} \text { ft. } \\ 205.6 \end{gathered}$	$\begin{aligned} & \text { ft. in. } \\ & 193.2 \end{aligned}$	$\begin{array}{r} \text { ft. } . \text { in. } \\ 176.4 \end{array}$	$\begin{gathered} \text { ft. } \\ 164 . \\ { }^{\text {in. }} \end{gathered}$	$\begin{aligned} & \text { ft. in. } \\ & 149.6 \end{aligned}$	$\begin{array}{r} \text { ft. in. } \\ 155.3 \end{array}$	$\begin{aligned} & \mathrm{ft.} \text { in. } \\ & 150.1 \end{aligned}$

(I.)-Readings of a Thermometer whose bulb is sunk to the depth of $25 \cdot 6$ feet (24 French feet) below the surface of the soil, at Noon on every Day of the Year.

1910.												
$\begin{aligned} & \text { Days of } \\ & \text { Hene } \\ & \text { Month } \end{aligned}$	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.
d	-	-	-	-	-	-	-	-	-	-	-	-
1	52.60	51.82	51.08	$50 \cdot 27$	49.68	$49^{\circ} 47$	$49 \cdot 66$	50.44	51.33	52.19	52.75	52.95
2	52.60	51.78	51.07	$50 \cdot 26$	4970	$49 \cdot 47$	49.67	$50 \cdot 47$	51.36	52.22	52.75	52.95
3	52.58	51.77	51.03	50.23	4970	$49 \cdot 48$	4970	$50 \cdot 50$	5140	52.24	52.75	52.95
4	52.55	5175	5101	50.21	49.67	$49 \cdot 46$	4971	50.54	51.42	$52 \cdot 26$	52.76	52.96
5	52.53	5172	$50 \cdot 98$	$50 \cdot 20$	49.65	$49 \cdot 46$	49.72	$50 \cdot 55$	51.44	52.28	$52 \cdot 76$	52.98
6	52.49 52.47	5172	50.97	50.19	49.65	49.46	49×75	50.59 50.62	51.48 51.49	52.30 52.32	52.80 52.82	52.96 52.96
7	52.47	5171	50.95	50.15	$49 \cdot 65$	49.45	$49 \cdot 75$	$50 \cdot 62$	51.49	52.32 52.31	52.82 52.83	52.96 52.96
8	52.45	51.65	50.91	5013	$49 \cdot 61$	49.45	49.79	50.65	51.53	52.34	52.83 5.8	52.96
9	52.45	51.61	50.90	50.12	49.60	. 49 '47	49.80	50.67	51.55	52.36	52.84	52.95
10	52.42	51.60	$50 \cdot 86$	50'10	49.59	$49 \cdot 47$	49.84	$50 \cdot 71$	51.58	$52 \cdot 38$	52.85	52.95
11	52.40	51.59	$50 \cdot 83$	50.11	49.59	$49 \cdot 45$	49.86	50.74	51.64	52.42	52.85	52.94
12	52.35	51.55	50.80	50.07	$49 \cdot 57$	49.48	49.88	$50 \cdot 77$	51.65	52.42	$52 \cdot 86$	52.94
13	52.31	51.54	50.74	50.05	49.57	4949	49.90	$50 \cdot 80$	51.70	52.44	52.90	52.93
14	52.34	5149	50.72	50.01	49.57	49.50	49.94	$50 \cdot 85$	51.71	52.45	52.90	52.92
15	52.30	5147	$50 \cdot 69$	50.00	49.55	49.50	49.95	$50 \cdot 85$	5175	52.47	5291	5291
16	52.28	5144	50.67	49.97	$49 \cdot 56$	49.50	49.98	50.89	51.78	52.51	52.90	52.90
17	52.22	5143	$50 \cdot 65$	49.95	49.54	$49 \cdot 49$	50.01	50.90	51.78	52.54	52.89	52.88
18	52.20	5140	$50 \cdot 60$	49.95	49.53	49.51	50.03	50.90	51.83	52.55	52.91	$52 \cdot 86$
19	52.17	5135	$50 \cdot 58$	49.92	$49^{\circ} 51$	49.52	50.07	50.97	51.86	52.56	52.92	$52 \cdot 85$
20	$52 \cdot 13$	5135	$50 \cdot 55$	49.94	49.53	49.55	50.09	51.00	51.87	52.56	52.91	$52 \cdot 84$
21	52.10	51.32	50.54	49.90	49.52	49.55	$50 \cdot 13$	51.04	51.90	52.60	52.90	52.83
22	52.06	5129	50.54	49.88	49.54	49.55	$50 \cdot 15$	51.05	51.94	52.62	52.90	52.80
23	52.03	51.26	$50 \cdot 50$	$49 \cdot 85$	49.52	49.57	$50 \cdot 18$	51.09	51.98	52.61	52.92	52.78
24	52.02	51.25	50.45	49.80	49.50	49.57	$50 \cdot 20$	51.12	52.00	52.64	52.94	52.78
25	5199	51.22	$50 \cdot 45$	$49 \cdot 81$	49.48	49.58	$50 \cdot 23$	$51 \cdot 15$	52.02	52.67	52.94	52.75
26	51.95	5117	50.40	49.79	49.48	49.60	50.25	51.17	52.05	52.69	52.93	52.73
27	5191	$51 \cdot 15$	$50 \cdot 40$	49.78	$49 * 48$	$49 \cdot 61$	50.30	$51 \cdot 20$	52.08	52.70	52.96	52.68
28	51.92	$51 \cdot 12$	50.37	4977	49.49	49.64	50.34	51.22	52.11	52.72	52.94	52.66
29	51.87		50.34	49.75	$49^{*} 48$	$49 \cdot 65$	$50 \cdot 35$	51.26	52.13	52.72	52.93	52.65
30	51.85		50.33	49.73	49.49	$49 \cdot 65$	50.40	51.30	$52 \cdot 15$	52.74	52.95	52.65
31	51.84		$50 \cdot 30$		$49 \cdot 47$		$50 \cdot 42$	51.32		52.74		52.61
Means	52.24	5148	50.68	50.00	49.56	$49 \cdot 52$	50.00	50.88	5175	52.49	52.87	$52 \cdot 85$
The mean of the twelve monthly values is $5 \mathrm{I}^{\circ} \cdot 19$.												

(II.)-Readings of a Thermometer whose bulb is sunk to the depth of 12.8 feet (12 French feet) below the surface of the soil, at Noon on every Day of the Year.

1910.												
$\begin{gathered} \text { Days of } \\ \text { the } \end{gathered}$	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.
d	-	-	-	-	-	-	-	-	-	-	-	-
1	$50 \cdot 15$	48.73	$47 \cdot 17$	$46 \cdot 80$	47.20	$48 \cdot 70$	51.81	53.97	55.60	56.01	$55 \cdot 40$	53.01
2	$50 \cdot 12$	48.67	47'18	$46 \cdot 80$	47.21	$48 \cdot 79$	51.88	53.99	$55^{\circ} 61$	56.02	55.33	52.89
3	50.03	$48 \cdot 59$	$47 \cdot 16$	$46 \cdot 80$	$47 \cdot 27$	48.91	52.01	54.04	55.69	55.92	55.30	52.72 52.66
4	49.97	$48 \cdot 51$	$47 \cdot 15$	$46 \cdot 80$	47.30	49.00	$52 \cdot 10$	$54 \cdot 10$	55.68	55.93	55.25	52.66
5	49.90	48.46	47.14	$46 \cdot 80$	$47 \cdot 33$	49.10	$52 \cdot 22$	$54 \cdot 12$	55.68	$55 \% 90$	55.15	52.55
6	$49 \cdot 82$	$48 \cdot 40$	47* 11	$46 \cdot 79$	$47 \cdot 40$	$49 \cdot 19$	$52 \cdot 32$	$54 \cdot 19$	55.74	55.90	55^{20}	52.40
7	49.77	$48 \cdot 32$	$47 \cdot 12$	$46 \cdot 79$	$47 \% 1$	49.29	52.40	54.25	55.77	55.90	$55^{\circ} 16$	52.30
8	49.73	$48 \cdot 22$	47.10	$46 \cdot 79$	4742	49.40	52.50	54.29	55.82	55.88	55.09	52.20
9	$49 \cdot 69$	48.11	$47 \cdot 10$	$46 \cdot 80$	47×46	49.50	52.59	54.33	55.81	55.89	55.04	52.09
10	$49 \cdot 68$	48:10	47.07	$46 \cdot 78$	$47 \cdot 50$	49.59	52.66	54.39	$55 \cdot 88$	55.88	54.99	52.00

(II.)-Readings of a Thermometer whose bulb is sunk to the depth of 12.8 feet (12 French feet) below the surface of the soil, at Noon on every Day of the Year-concluded.

1910.												
Days of the	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.
d	${ }^{\circ}$	-	-	-	-	-	。		-	-	-	-
II	$49^{\circ} 60$	48.01	47.04	$46 \cdot 80$	47.55	49.69	52'77	54.46	55.94	$55 \cdot 87$	54.91	51.85
12	49.52	47.92	$47 \cdot 01$	$46 \cdot 80$	47.59	49.80	52.85	54.50	55.98	55.78	54.88	51.79
13	$49 \cdot 50$	$47 \cdot 88$	$46 \cdot 95$	$46 \cdot 79$	47.60	49.90	52.90	54.60	55.95	5579	54.85	51.69
14	49.51	$47 \cdot 80$	$46 \cdot 96$	$46 \cdot 78$	47.66	50.00	52.99	54.70	55.90	5578	54.77	51.60
15	$49{ }^{1} 1$	4776	$46 \cdot 93$	$46 \cdot 79$	4770	$50 \cdot 10$	53.05	5475	55.98	55.77	54.69	5151
16	$49^{\circ}{ }^{\circ}$	$47 \cdot 70$	46.91	$46 \cdot 79$	$47 \cdot 72$	50.18	53.10	54.78	55.99	55.81	54.54	51.42
17	$49 \cdot 34$	$47 \cdot 68$	$46 \cdot 92$	$46 \cdot 78$	47.73	50.25	$53 \cdot 18$	54.80	55.98	55.81	54.41	$51 \cdot 32$
18	49.31	$47 \cdot 58$	$46 \cdot 90$	$46 \cdot 80$	$47 \cdot 78$	50.40	53.18	54.88	$56 \cdot 02$	55.80	54.39	51.29
19	$49 \cdot 28$	$47 \cdot 57$	$46 \cdot 90$	$46 \cdot 80$	$47 \cdot 80$	50.57	53.26	54.91	$56 \cdot 05$	55.80	54.30	51.20
20	49.22	47.51	$46 \cdot 90$	$46 \cdot 81$	$47 \cdot 87$	50.67	53.29	54.99	$56 \cdot 00$	55.73	54.15	5115
21	49'11	47×45	$46 \cdot 88$	$46 \cdot 82$	47.88	$50 \cdot 73$	53.38	$55^{\circ} \mathrm{C} 7$	56.01	55.76	54.03	5110
22	$49 \cdot 12$	$47 \cdot 40$	$46 \cdot 90$	$46 \cdot 88$	47.96	$50 \cdot 83$	53.39	55.12	56.02	55.71	53.95	51.00
23	49*08	$47 \cdot 38$	$46 \cdot 90$	$46 \cdot 90$	47.99	50.95	53.46	$55 \cdot 10$	$56 \cdot 04$	55.69	53.90	51100
24	$49^{\circ} 08$	$47 \cdot 34$	$46 \cdot 88$	$46 \cdot 91$	48.04	51.03	53.50	55.20	$56 \cdot 05$	55.68	53.80	51×0
25	$49^{\circ} 00$	$47 \cdot 28$	$46 \cdot 88$	$46 \cdot 94$	48.07	5113	53.59	55.21	56.05	55.68	53.70	50.96
26	$48 \cdot 98$	47.22	$46 \cdot 88$	$46 \cdot 97$	48.16	5129	53.61	55.28	56.02	55.66	53.60	50'90
27	$48 \cdot 90$	$47^{\prime 22}$	$46 \cdot 88$	$47 \cdot 00$	$48 \cdot 23$	51.40	53.70	55.30	$56 \cdot 05$	55.61	53.51	$50 \cdot 81$
28	$48 \cdot 92$	$47 \cdot 20$	$46 \cdot 87$	47.07	$48 \cdot 33$	5150	53.80	55.35	$56 \cdot 07$	$55 \cdot 60$	53.37	50.79
29	$48 \cdot 88$		$46 \cdot 83$	47.08	$48 \cdot 39$	51.60	53.80	55.41	56.00	55.53	53.20	50.78
30	$48 \cdot 81$		$46 \cdot 84$	$47 \cdot 12$	$48 \cdot 50$	5174	53.89	55.50	$56 \cdot 00$	55.50	53.12	50.71
31	$48 \cdot 78$		46.81		48.59		53.91	55.51		55.42		50.69
Means	$49^{\circ} 4$	$47 \cdot 86$	$46 \cdot 98$	$46 \cdot 85$	4776	50.17	53.00	54.74	55\%91	55.77	54.47	5159
				e me	the t	ve mo	ly val	is $51^{\circ} \cdot$				

(III.)-Readings of a Thermometer whose bulb is sunk to the depth of 6.4 feet (6 French feet) below the surface of the soil, at Noon on every Day of the Year.

1910.												
Days the	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.
d	-	-		-	-	\because		-				-
1	$47 \% 0$	$45 * 59$	$45 \cdot 48$	45.87	$48 \cdot 12$	52.46	$57^{\circ} 02$	57.99	59.67	57.94	55.82	$49^{\circ} 10$
2	$47{ }^{\circ} 1$	$45 \cdot 44$	$45^{\circ} 47$	45\%91	$48 \cdot 17$	$52 \cdot 60$	57.06	58.05	59.60	57.92	55.70	$48 \cdot 61$
3	47.44	$45 \cdot 31$	$45^{\circ} 44$	45.93	$48 \cdot 20$	52.76	57.08	$58 \cdot 17$	59.59	57.85	55.60	$48 \cdot 65$
4	47.43	$45 \cdot 20$	$45^{\circ} 41$	45.92	$48 \cdot 26$	$52 \cdot 88$	$57 \cdot 10$	$58 \cdot 30$	59.50	57.88	55.43	$48 \cdot 64$
5	$47 \cdot 43$	$45 \cdot 13$	$45 \cdot 38$	$45^{\circ} 91$	$48 \cdot 31$	$53^{\circ} 00$	57.18	$58 \cdot 37$	59.47	57.88	55.20	$48 \cdot 60$
6	$47 \cdot 48$	$45^{\circ} 07$	45.37	$45^{\circ} 90$	$48 \cdot 40$	$53^{\prime 11}$	57.19	58.47	59.45	57.85	55.08	$48 \cdot 65$
7	$47 \cdot 53$	$44 \cdot 92$	$45 \cdot 36$	45.92	$48 \cdot 43$	53.24	57.20	58.59	59.38	57.85	54.82	48.70
8	$47 \cdot 55$	44.90	45.36	$45 \cdot 96$	48.48	53.41	57.20	58.60	59.38	57.80	54.56	48.80
9	47*53	44.94	45.40	46.00	$48 \cdot 50$	53.57	5718	58.68	59.28	57.80	54.30	$48 \cdot 86$
10	$47 \cdot 57$	$45 \cdot 08$	$45 \cdot 41$	$46 \cdot 00$	48.53	53.73	57111	58.77	59.26	57.77	54.02	$48 \cdot 90$
11	47.55	45.11	$45^{\circ} 51$	46.10	$48 \cdot 58$	53.87	$57^{11} 1$	$58 \cdot 83$	59:21	57.77	53.80	48.90
12	$47 \cdot 57$	45^{111}	45.61	$46 \cdot 14$	$48 \cdot 58$	54.12	57.10	58.88	59.18	57.67	53.60	$49^{\circ} 0$
13	47.59	$45 \cdot 10$	45.70	46.17	48.57	54.37	57.07	58.90	59.06	57.68	53.40	$49^{\circ} 00$
14	$47 \cdot 60$	$45 \cdot 11$	45.78	$46 \cdot 27$	48.61	54.55	57.08	59.01	58.95	57.63	$53 \cdot 16$	49.07
15	47.51	$45 \cdot 11$	45.80	46.40	$48 \cdot 70$	54.78	57.08	59.08	58.90	57.58	52.90	49*10

（III．）—Readings of a Thermometer whose bulb is sunk to the depth of 6.4 feet（ 6 French feet）below the surface of the soil， at Noon on every Day of the Year－concluded．

1910.												
$\begin{aligned} & \text { Days of } \\ & \text { Mone. } \\ & \text { Monthe } \end{aligned}$	January．	February．	Malsil．	April．	May．	June．	July．	August．	September．	Octoler．	November．	Decenluer．
d	－	－		。			－	－	。		－	－
16	$47^{\prime} 45$	． 45.09	$45 \cdot 84$	$46 \cdot 52$	$48 \cdot 79$	54.95	$57 \cdot 10$	59．10	58.85	57.59	52.70	49＊10
17	47×40	$45^{\circ} 10$	45.82	$46 \cdot 69$	48.95	$55^{\circ} 08$	57.20	59.15	58.80	57.49	52.51	$49 \cdot 10$
18	4737	$45^{\circ} 10$	$45 \cdot 80$	$46 \cdot 82$	49.11	55.30	57.20	59.22	58.72	57.35	52.41	49.20
19	$47 \cdot 37$	$45 \cdot 10$	45.78	46.92	$49 \cdot 30$	55.50	57.35	59.31	58.70	57.21	52.21	49.28
20	47.36	$45 \cdot 13$	45.78	47.08	49.61	55.61	57.43	59.39	58.60	57＊10	52.00	49.30
21	4730	$45^{\circ 20}$	$45^{\prime} 70$	$47 \cdot 18$	49.80	55.71	57.48	59.40	58.59	57.01	51.78	$49^{\prime 3}{ }^{2}$
22	$47 \cdot 28$	45.25	45.70	47.30	； $0 \cdot 10$	55.88	57.52	5942	58.55	56.90	51.55	49.29
23	47.24	45.38	45.65	47.43	$50 \cdot 38$	$56 \cdot 13$	57.57	59.52	58.49		5136	49.30
24	47.05	$45^{4} 42$	45.63	47.60	50.64	56.31	57.60	59.60	58.39	56.67	51.10 5.8	4930
25	$46 \cdot 88$	$45 \cdot 45$	45.63	$47 \% 5$	$50 \cdot 88$	56.52	57%	59.60	58.25	$56 \cdot 56$	50.82	49.28
26	$46 \cdot 70$	45.40	45.60	47.86	51．18	$56 \cdot 70$	57.72	59.61	$58 \cdot 17$	$56 \cdot 43$	$50 \cdot 51$	49.21
27	$46 \cdot 50$	$45 \cdot 48$	$45 \cdot 66$	47.95	51.44	56.89	57.80	59.65	58.10	$56 \cdot 30$	50.31	$49 \cdot 12$
28	$46 \cdot 40$	$43^{\circ} 48$	45.66	$47^{\circ} 99$	51.69	$57^{\circ} 00$	57.87	59.70	58.08	$56 \cdot 20$	49.77	49.11
29	$46 \cdot 10$		45.70	48.02	51.82	$57^{\circ} 00$	57.81	59.70	57.99	$56 \cdot 10$	$49 \cdot 60$	49.05
30	45.89		4578	48.07	$52 \cdot 06$	$57^{\circ} 00$	57.89	5970	57.90	56.01	49.52	$48 \cdot 93$
31	45.75		$45 \cdot 80$		52.21		5791	59.70		$55^{\circ}{ }^{\circ}$		$48 \cdot 78$
Means	$47 \cdot 18$	$45^{\circ} 20$	45^{61}	$46 \cdot 72$	$49^{\circ} 5^{\circ}$	54.80	57.35	59.05	58.87	57.24	$52 \cdot 85$	$49^{\circ} \mathrm{O}$

The mean of the twelve monthly values is $5 \mathrm{I}^{\circ} \cdot 95$ ．
（IV．）－Readings of a Thermometer whose bulb is sunk to the depth of 3.2 feet（ 3 French feet）below the surface of the soil， at Noon on every Day of the Year．

1910.												
$\begin{gathered} \text { Days of } \\ \text { the } \end{gathered}$	January．	February．	March．	April．	May．	June．	July．	August．	Septemler．	Octoher．	November．	December．
d	。		－	。	－	－	－	－	－	\bigcirc	－	－
1	$44 * 08$	40．18	$42 \cdot 39$	$43 \cdot 58$	47．18	54.49	58.89	59.87	$60 \cdot 40$	$57 \cdot 6 \mathrm{I}$	53.70	$43 \cdot 70$
2	44.05	$40 \cdot 24$	4.26	43.41	47.20	54.40	58.63	$60 \cdot 10$	60．30	57.70	53.40	4370
3	$44 \cdot 18$	$40 \cdot 37$	$42 \cdot 2 \mathrm{I}$	$43 \cdot 28$	$47 \cdot 40$	$54 \cdot 69$	58.51	$60 \cdot 23$	$60 \cdot 30$	57.74	52.90	44.00
4	$44 \cdot 57$	$40 \cdot 41$	$42 \cdot 22$	43.29	$47 \cdot 38$	54.81	58.31	$60 \cdot 30$	$60 \cdot 20$	$57 \cdot 81$	52．15	$44 \cdot \mathrm{I} 3$
5	44.74	$40 \cdot 37$	42．18	43.35	47.40	54.95	58．1 I	$60 \cdot 40$	60.03	57.55	5150	$44 \cdot 30$
6	4.4 .69	$40 \cdot 37$	42：20	$43 \cdot 50$	$47 \cdot 40$	55.02	$58 \cdot 20$	$60^{\circ} 42$	59.84	57.43	51.00	$44 \cdot 80$
7	44.62	$40 \cdot 93$	42.50	43.51	$47 \cdot 40$	55．16	58.25	$60 \cdot 43$	59.63	57.51	50.47	$45^{\circ} \mathrm{I} 9$
8	44.48	41．61	$42 \cdot 80$	$43 \cdot 63$	$47 \cdot 32$	55.51	$58 \cdot 12$	$60 \cdot 36$	59．51	57.50	50.21	$45 \cdot 47$
9	44.40	$42 \cdot 00$	$43 \cdot 10$	$43 \cdot 80$	4731	56.02	57.95	60.47	59.31	57.50	49.98	$45 \cdot 61$
10	$44 \cdot 60$	4191	$43^{\prime} 51$	43.90	47＇14	$56 \cdot 47$	$57 \cdot 82$	$60 \cdot 54$	59.23	57＊53	49.50	$45 \cdot 85$
11	44.97	$41 \cdot 61$	43.80	$44^{*}{ }^{\circ}$	$47^{\circ} 03$	57．00	57.70	$60 \cdot 47$	59＊01	57.48	$49^{\circ 00}$	$46 \cdot 08$
12	$44^{\circ} 91$	41．60	43.92	44.34	47．10	57.32	57.70	60.47	59.00	57.34	$48 \cdot 80$	$46 \cdot 34$
13	$44^{\circ} 5 \mathrm{I}$	41．43	43.80	44.73	47.38	57.70	$57 \cdot 80$	$60 \cdot 60$	58.95	57.27	$48 \cdot 51$	$46 \cdot 52$
14	$44^{\circ} \mathrm{O}$	41．54	$43 \cdot 68$	45.20	47.78	$57 \cdot 92$	$58 \cdot 10$	$60 \cdot 78$	$58 \cdot 70$	56.94	$48 \cdot 50$	$46 \cdot 61$
15	43.90	4178	43.34	$45 \cdot 62$	$48 \cdot 21$	$57 \cdot 98$	$58 \cdot 30$	$60 \cdot 88$	$58 \cdot 50$	$56 \cdot 54$	$48 \cdot 60$	$46 \cdot 72$
16	44^{10}	41「79	$43^{\circ} 10$	45.92	$48 \cdot 76$	57＊90	58.51	61．10	58.41	$56 \cdot 27$	$48 \cdot 53$	46．90
17	44.40	41.70	42.95	$46 \cdot 02$	$49 \cdot 32$	$57 \cdot 80$	58.70	$6 \mathrm{I} \cdot 20$	58.40	55.95	$48 \cdot 20$	47.00
18	44.52	41.90	$43^{\circ} 00$	$46 \cdot 10$	49.99	57.90	58.74	$61 \cdot 30$	58.48	55.81	$47 \cdot 70$	47.00
19	44.40	42.42	$43^{\circ} 00$	45.90	$50 \cdot 50$	58.18	$58 \cdot 78$	$6 \mathrm{I} \cdot 30$	58.50	55.75	$47 \cdot 11$	$46 \cdot 90$
20	44^{28}	$42 \cdot 78$	$42 \cdot 80$	$46 \cdot 30$	51.09	$58 \cdot 66$	$58 \cdot 67$	61.30	5840	$55 \cdot 60$	$46 \cdot 80$	$46 \cdot 70$

(IV.)-Readings of a Thermometer whose bulb is sunk to the depth of 3.2 feet (3 French feet) below the surface of the soil, at Noon on every Day of the Year-concluded.

1910.												
Days of the	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.
d		-	-	-	\bigcirc	-	-	${ }^{\circ}$	。	-	-	-
2 I	43.92	$42 \cdot 95$	$42 \cdot 60$	$46 \cdot 90$	51.62	59.04	58.77	61.35	58.19	55.40	$46 \cdot 50$	$46 \cdot 60$
22	$43 \cdot 46$	43.02	42.50	4730	$52 \cdot 39$	59.56	58.97	61.36	57.78	55.04	$46 \cdot 01$	$46 \cdot 61$
23	$43 \cdot 02$	$43 \cdot 10$	$42 \cdot 60$	$47 \cdot 60$	52.72	59.91	59.13	$61 \cdot 33$	57.49	54.80	$45 \cdot 52$	$46 \cdot 58$
24	$42 \cdot 30$	43.02	$42 \cdot 60$	47*58	53'13	59.85	59:18	61.23	57.23	54.58	$45^{\circ} 00$	$46 \cdot 37$
25	42.10	$42 \cdot 90$	42•79	$47 \cdot 37$	53.37	59.74	$59^{\circ} 10$	61.18	57×16	54.39	44.72	$46 \cdot 40$
26	$41 \cdot 98$	$42 \cdot 78$	42.95	$47 \cdot 24$	53.52	59.58	59\%1	$61 \cdot 20$	57.20	54.30	44.63	$46 \cdot 37$
27	41.45	$42 \cdot 80$	$43 \cdot 30$	47.07	53.53	59.40	58.90	61.20	57.30	54.31	44.50	$46 \cdot 08$
28	$40 \cdot 90$	$42 \cdot 58$	43.38	$46 \cdot 95$	53.77	59'17	$58 \cdot 90$	61.10	57.40	54.40	$44^{\circ} 00$	45.70
29	$40 \cdot 60$		43.49	$47 \cdot 04$	53.94	$59^{\circ} \mathrm{O}$	59*01	$60 \cdot 89$	57.32	54.30	44*15	$45 \cdot 10$
30	$40 \cdot 42$		$43 \cdot 68$	$47^{\circ} 02$	54.30	59.00	59.34	$60 \cdot 67$	57.48	54.20	44*19	44.70
31	$40 \cdot 31$		$43 \cdot 67$		54.38		59.52	$60 \cdot 50$		54.00		$44 * 48$
Means	$43^{\circ} 5^{1}$	41*79	$42 \cdot 98$	$45^{\circ}{ }^{\circ}$	$49^{\circ} 9^{\circ}$	$57 \% 47$	58.57	$60 \cdot 79$	$58 \cdot 66$	$56 \cdot 15$	$48 \cdot 19$	4576
The mean of the twelve monthly values is $50^{\circ} .76$.												

(V.)-Readings of a Thermometer whose bulb is sunk to the depth of I inch below the surface of the soil, at Noon on every Day of the Year.

1910.												
Days of Month.	January.	February.	March	April.	May.	June.	July.	August.	September.	October.	November.	December.
d	-	-	-	-		。	-			-	-	
1	$42^{\circ} \mathrm{O}$	39°	$40 \cdot 4$	42.0	$52 \cdot 0$	$58 \cdot 0$	59.2	63.4	61.0	59^{2}	$51 \cdot 2$	$43 \cdot 8$
2	46°	$39 \cdot 3$	$42 \cdot 8$	$43 \cdot 1$	$51 \cdot 2$	$58 \cdot 7$	59.2	63.2	61.0	$61 \cdot 1$	48.0	$43 \cdot 8$
3	47.4	$39 \cdot 6$	$42^{\circ} \mathrm{O}$	42^{2}	$48 \cdot 2$	$58 \cdot 3$	58.0	$62 \cdot 8$	$61 \cdot 2$	58.0	$46 \cdot 0$	43°
4	$45 \cdot 8$	$37^{\circ} \mathrm{C}$	419	$44^{\circ} \mathrm{O}$	$48 \cdot 0$	59°	$58 \cdot 8$	63.1	59°	57°	$46 \cdot$	443
5	$44^{\circ} 9$	387	43^{1}	45°	48.0	60°	59.1	62.4	59.2	58.0	43°	$48 \cdot 1$
6	$43 \cdot 3$	45°	$46 \cdot 0$	44.5	$49 \cdot 1$	$60 \cdot 0$	$60 \cdot 2$	62.0	59.4	58.0	$43^{\circ} 9$	47°
7	43.1	47.3	$46 \cdot 0$	$45^{\circ} \mathrm{O}$	$48 \cdot \circ$	${ }^{61} \cdot 0$	59.0	$62 \cdot 0$	$59 \cdot 1$	$58 \cdot 9$	$46 \cdot 7$	47°
8	$43 \cdot 6$	45°	$46 \cdot$	44°	$48 \cdot$	63.0	$58 \cdot 8$	$63^{\circ} \circ$	59.6	59°	$45 \cdot 8$	$46 \cdot 9$
9	47°	$40^{\prime 2}$	$48^{\circ} \mathrm{O}$	$45^{\circ} \mathrm{O}$	45°	$65^{\circ} \mathrm{O}$	58.0	$62 \cdot 1$	$58 \cdot 1$	58.4	43^{1}	$47 \cdot 8$
10	$47 \cdot 8$	39.5	$47 \cdot 2$	$48 \cdot 0$	$46 \cdot 2$	$63^{\circ} \mathrm{O}$	57°	61.9	$57 \cdot 3$	58.5	42.0	48.0
11	$45^{\circ} \mathrm{O}$	$43^{\circ} \mathrm{O}$	45.3	47.2 48.8	49.3 50.3	$62 \cdot 8$ $65 \cdot 0$	58.8 $60 \cdot 0$	62.2 63.3	59.3	$58 \cdot 9$ 56.3	$45^{\circ} \mathrm{O}$	
12	$42^{\circ} \cdot$	39°	44°	$48 \cdot 8$	$50 \cdot 3$	65.0 65.0	60.0	63.3 63.0	59.5	$56 \cdot 3$ $56 \cdot 8$	42°	48.2
13	$40 \cdot 0$	$43^{\circ} \mathrm{O}$	$42 \cdot 5$	51°	50°	65°	$60^{\circ} 2$	$63^{\circ} \mathrm{O}$	58.5	$56 \cdot 8$	$47^{\prime 2}$	48.4
14	$45^{6} 6$	$41 \cdot 5$	415	50°	54°	$6 \mathrm{~K}^{\circ} \mathrm{O}$	$61^{\circ} \mathrm{O}$	${ }^{6} 4^{\circ} \mathrm{O}$	57.4	53.9	$47 \cdot 1$	48.4
15	$45 \cdot 3$	$42 \cdot 2$	$40 \cdot 0$	50°	55°	61°	61.0	65°	59°	53.2	$46 \cdot 2$	49^{2}
16	$48 \cdot 0$	39°	$4{ }^{1 \cdot 2}$	$50 \cdot 3$	' $56 \cdot 1$	$60 \cdot 0$	$60 \cdot 7$ 62.0	64.0 64.0	59.2 59.0	54.5 55.7	42.5	49.4
17	45°	46°	$44 \cdot 8$	$46 \cdot 9$	55°	59.2	$62^{\circ} \mathrm{O}$	$6_{4}{ }^{\circ} \mathrm{O}$	59°	55.7	$34 \cdot 1$	$48 \cdot 0$
18	$44 \cdot 3$	$46 \cdot$	$41 \cdot 2$	48.0	57.3	62.3	$60^{\circ} 4$	${ }^{6} 3{ }^{\circ}$	59.5	55°	$40^{\circ} 9$	$45^{\circ} 9$
19	43°	$47^{\circ} \mathrm{O}$	$40 \cdot 3$	52.0	57.5	$64 \cdot 0$	59.6	$64^{\circ} 2$	59.1	55°	414	$40 \cdot 2$
20	41°	45°	$40^{\circ} \mathrm{O}$	52.0	$60 \cdot 4$	65.9	$61 \cdot 3$	64°	56.0	$52 \cdot 3$	$41 \cdot 5$	45^{1}
21	39°	45°	42°	54°	60.0	$66 \cdot 1$	629	64.0	54.2	$52 \cdot 3$	38.2	$48 \cdot 5$
22	$35^{\circ} 5$	45°	$44^{\circ} \mathrm{O}$	$52 \cdot 5$	59°	$64 \cdot 8$	${ }^{61} 9$	$6_{2} \cdot 0$	55^{6}	53.2	38.2	$46 \cdot$
23	37°	$44^{\prime 2}$	$42 \cdot 0$	47.5	$60^{\circ} 6$	63.9	${ }_{61} \cdot 3$	$6{ }^{6} \cdot 0$	55°	52.5	$36 \cdot 2$	44°
24	41°	$43^{\circ} \mathrm{O}$	44°	$50 \cdot 0$	59.4	$62 \cdot 1$	$60 \cdot 3$ $60 \cdot 8$	$63 \cdot 3$ 62.2	56.9	52.4	40°	49°
25	38.0	45°	44^{8}	$4^{8 \cdot 1}$	$56 \cdot 1$	$6{ }^{\prime} 9$	$60 \cdot 8$	62.2	$58 \cdot 5$	53.9	$40^{\circ} 9$	45°

（V．）－Readings of a Thermometer whose bulb is sunk to the depth of I inch below the surface of the soil，at Noon on every Day of the Year－concluded．

1910.												
$\begin{aligned} & \text { Days of } \\ & \text { the } \\ & \text { Month. } \end{aligned}$	January．	February．	March．	April．	May．	June．	July．	August．	September．	October．	November．	December．
d	－		－	－	。	。	－	－	－	－	－	－
26	35%	$43^{\circ} 0$	＋4．0	47＊0	$56 \cdot 6$	593	$58 \cdot 6$	64.2	$60 \cdot 0$	$55^{\circ} \mathrm{O}$	$38 \cdot 2$	$44^{\circ} \mathrm{O}$
27	$34^{\circ} \mathrm{O}$	$41^{\circ} \mathrm{O}$	$44^{\circ} \mathrm{O}$	473	579	593	$60 \cdot 0$	61.0	$58 \cdot 2$	$54 \cdot 8$	$42 \cdot 0$	41.0
28	$38 \cdot 0$	$41^{\prime 6}$	44.4	$50 \cdot 0$	$60 \cdot 1$	617	62.4	$61 \cdot 2$	58.0	54.5	$42 \cdot 3$	$38 \cdot 1$
29	$36 \cdot 0$		$44^{\prime 2}$	$46 \cdot 8$	60°	$60 \cdot 9$	$62 \cdot 1$	$60 \cdot 9$	$60 \cdot 1$	$53 \cdot 2$	39°	$42 \cdot 0$
30	$36 \cdot 2$		43.5	$47 \cdot 1$	574	$60 \cdot 0$	$62 \cdot 1$	610	$58 \cdot 3$	53.0	41°	42.5
31	37.4		42.4		57°		$63 \cdot 6$	$60 \cdot 2$		51.2		$40 \cdot 8$
Means	$41 \cdot 8$	$42 \cdot 5$	$43 \cdot 3$	$47 \cdot 6$	$54^{\circ} \mathrm{O}$	6177	$60 \cdot 3$	62.7	$58 \cdot 5$	$55 \cdot 6$	$42 \cdot 7$	$45 \cdot 8$

The mean of the twelve monthly values is $51^{\circ} \cdot 37$ ．
（VI．）－Readings of a Thermometer within the case covering the deep－sunk Thermometers，whose bulb is placed on a level with their scales，at Noon on every Day of the Year．

1910.												
$\begin{aligned} & \text { Days of } \\ & \text { Hont } \\ & \text { Honth. } \end{aligned}$	January．	February．	March．	April．	May．	June．	July．	August．	September．	October．	November：	December．
d	－	－	－		。		。	－	－		－	－
1	$40 \cdot 0$	$40^{\prime 2}$	$39^{\text {I }}$	$42 \cdot 8$	51.8	$62 \cdot 0$	58.1	$68 \cdot 3$	63.9	65°	49°	44°
2	$50 \cdot 6$	38.7	$48 \cdot 6$	479	49°	${ }_{6} 1 \cdot 0$	$60 \cdot 0$	$64 \cdot 8$	$62 \cdot 9$	67°	44°	$42 \cdot 0$
3	$48 \cdot 1$	$40 \cdot 6$	45^{2}	47°	52°	68.0	57.2	65.5	$63^{\circ} \mathrm{O}$	56.0	$44^{\circ} \mathrm{O}$	$40 \cdot 0$
4	43.9	$36 \cdot 5$	46.4	48.9	$49^{4.2}$	64°	${ }^{61.0}$	68.5 6.8	57°	60% $60 \cdot 0$	42.5	$46 \cdot$
5	$42 \cdot 8$	419	$49 \cdot 6$	$45 \cdot 3$	483		$60 \cdot 2$	63.8	57.3	$60 \cdot 0$	41°	51°
6	$39 \cdot 8$	$51^{\circ} \mathrm{O}$	51.2	$46^{\circ} \mathrm{O}$	54.0	68.0	$60 \cdot 5$ 58.8	$62 \cdot 8$ $66 \cdot 0$	58.5	$60^{\circ} 0$ 62.0	$41^{1 \cdot 2}$	47.9 48.8
7	39.9 42.6	53.0 43.5	51.8 49.5	$45^{\circ} \mathrm{I}$	51.5 49.0	64.3 69.8	$58 \cdot 8$ $58 \cdot 0$	$66 \cdot 0$ 63.0	57.4 61.2	62.0 59	$47 \cdot 1$ 45.4	$48 \cdot 8$ 48.0
9	$42 \cdot 6$ 51	43.5	49.5 51.3	44° 49	49. 46%	69.8 72.8	$55^{5}{ }^{\circ} \mathrm{O}$	63.0 60.4	61.2 554	59.5 57.1	45% 41.1	48.0 49.6
10	48.9	$43 \cdot 5$	48.0	$47 \cdot 0$	51.0	63.0	55.0	64.6	$60 \cdot 2$	$60 \cdot 8$	$38 \cdot 9$	48.0
11	$42 \cdot 8$	44^{12}	$46 \cdot 4$	53.5	55.3	643	58.0	65.9	$62 \cdot 3$	62.2	$43^{\circ} \mathrm{O}$	49^{2}
12	37°	$39^{\circ} 2$	$4^{2} \cdot 0$	55°	56.0	69.2	61.0	$66 \cdot 1$	$61^{\circ} \mathrm{O}$	$50 \cdot 7$	39°	49°
13	37°	$47^{\circ} \mathrm{O}$	$42^{\circ} \mathrm{O}$	$56 \cdot 0$	55°	67.0	$60 \cdot$	$62 \cdot 7$	$60^{\circ} \mathrm{O}$	54.2	50°	50°
14	52.5	$4^{1 .}$	45°	51.7	61.3	64.0	63°	69.3	$56 \cdot 0$	514	$48 \cdot 3$	$50 \cdot 0$
15	$46 \cdot$	43°	$4^{2} \cdot$	55°	64°	$65 \cdot 9$	$60 \cdot 6$	$70 \cdot 5$	61.0	$50 \cdot 7$	4^{6} o	$50 \cdot 7$
16	$51 \cdot 5$	$42^{\circ} \mathrm{O}$	$45 \cdot 1$	55°	$64^{\text {．}}$	$62 \cdot 0$	61.0	69.3	62.0	$56 \cdot$	38.0	50°
17	$42 \cdot 5$	52°	47.5	$45^{\circ} \mathrm{O}$	57°	$58 \cdot 0$	63.0	65°	60°	$56 \cdot 1$	40°	$48 \cdot 2$
18	45°	49°	37%	50°	63.5	68.0	$57 \cdot 2$	68.0	62.0	$56 \cdot 0$	$39^{\circ} 9$	43.9
19	$42 \cdot 0$	50°	41°	$56 \cdot 0$	$65 \cdot 0$	73.2	$63 \cdot 1$	68.0	$61 \cdot 3$	$54^{\circ} \mathrm{O}$	39°	47.5
20	39°	$48 \cdot$	4^{2}－	57°	717	$75 \cdot 4$	$64 \cdot 6$	69°	55°	49°	39°	$46 \cdot 0$
21	34°	4^{6}－	$44^{\circ} 5$	60°	$60 \cdot 0$	$69 \cdot 8$	$69 \cdot 9$	67°	56.0	52.7	$35^{\circ} \mathrm{O}$	$49 \cdot 5$
22	$31^{\circ} 6$	$45^{\circ} 5$	$48 \cdot 0$	53°		$66 \cdot 3$	63.1	60°	57.5	52.5	31°	41°
23	37°	$45^{\circ} \mathrm{O}$	$45 \cdot 5$	$46 \cdot 0$	69.4	$65^{\circ} \mathrm{O}$	61.8	65°	58.0	51.0	$35^{\circ} \mathrm{O}$	44°
24	$41^{\circ} \mathrm{O}$	44°	$44^{\circ} \mathrm{O}$	$50 \cdot 0$	$63 \cdot 1$	${ }_{61}^{61} 4$	$60 \cdot 7$	68.0	$58 \cdot 2$	52.0	$39^{\circ} 6$	$52^{\circ} \cdot$
25	34.5	$47 \cdot 5$	49.3	$50 \cdot 6$	54.4	61.2	$60 \cdot 0$	$63 \cdot 8$	62.0	55°	39°	43.2
26	29°	$44^{\circ} \mathrm{O}$	$44^{\circ} \mathrm{O}$	48.4	$60 \cdot 3$	$57^{\circ} 0$	57°	65°	$63^{\circ} \mathrm{O}$	$56 \cdot 2$	35°	
27	26°	$41^{\circ} \mathrm{O}$	45.2	53.8	$60 \cdot 2$	59°	62.8	$62 \cdot 0$	62.0	54.8	43.9	36.0
28	$42^{\circ} \mathrm{O}$	433	$49^{\cdot 6}$	$56 \cdot 3$	${ }^{6} 9{ }^{\circ} 7$	65°	68.0	63.5	65°	$57^{\circ} \mathrm{O}$	38.4	31.5
29	$36 \cdot 0$		$44^{\cdot 1}$	483	$60 \cdot 3$	$62 \cdot 5$	62.0	$62 \cdot 5$	$63^{\circ}{ }^{\circ}$	$51^{\circ} \mathrm{O}$	34°	41.5
30	$32 \cdot 0$		49.4	$49 \cdot 7$	57.9	$60 \cdot 9$	65.3	63.8	$58 \cdot 3$	51.2	41°	$\begin{array}{r}42 \\ 38 . \\ \hline 8\end{array}$
31	41^{1}		$43 \cdot 3$		57°		66.9	$62^{\circ} \mathrm{O}$		49.5		$38 \cdot 5$
Means	$40^{\circ} 9$	44^{1}	$45 \cdot 7$	50.5	57.8	65°	$60 \cdot 9$	65.3	$60 \cdot 0$	$55 \cdot 8$	$40^{\circ} 9$	45.5
The mean of the twelve monthly values is $52^{\circ} \%$ ．												

Abstract of the Changes of the Direction of the Wind, as derived from the Records of Osler's Anemometer in the Year 1910.

(It is to be understood that the direction of the wind was nearly constant in the intervals between the times given in the second column and those next following in the first column.)

Directions are given to 16 points of the Compass, $\mathrm{O}=\mathrm{N}, \mathrm{I}=$ NNE $\ldots \ldots \mathrm{I}=$ NNW.
Note.-The time is expressed in civil reckoning, commencing at midnight and counting from 0^{h} to 24^{h}.

Abstract of the Changes of the Direction of the Wind-continued.

Abstract of the Changes of the Direction of the Wind-continued.

Abstract of the Changes of the Direction of the Wind-continued.

ABSTRACT o																			
Greenwich Civil Time.		Change of Direction.			Greenwich Civil Time.		Change of Direction.	Amount of Motion.		Greenwich Civil Time.		Change of Direction.	$\begin{aligned} & \text { Amount of } \\ & \text { Motion. } \end{aligned}$		Greenwich Civil Time.		Change of Direction.	$\begin{gathered} \text { Amount of } \\ \text { Motion. } \end{gathered}$	
From	To		Direct.	Retrograde.	From	To		Direct.	$\begin{aligned} & \text { Retro. } \\ & \text { grade. } \end{aligned}$	From	To		Direct.	Retro- grade.	From	To		Direct.	Retro-
Aug.	cont.				Aug.-	cont.				Septe	mber.				Sept.	cont.			
d h	d				d h	d h				${ }^{\text {d }}$	d				d h	d h			
2. 6	2. 8	10-9		1	14.13	14. $13 \frac{1}{2}$	6-4		2	I. 0	1. $4 \frac{3}{4}$	10-14	4		23. $11 \frac{1}{4}$	23. $11 \frac{1}{2}$	15-14		I
3. 6	3. 7	9-10	I		14.22	$14.23 \frac{1}{4}$	4-5	1		I. $7 \frac{1}{2}$	1. 8	$14-15$	1		23. $16 \frac{1}{2}$	23.163	$14-15$	I	
3. 12	3. 124	10--9		1	15. 32	15.4	5-6	1		1. 22	$1.22 \frac{1}{4}$	15-8		7	23.19	$23.19 \frac{1}{4}$	15-14		1
3. $19{ }^{\frac{3}{4}}$	3.20	9-8		1	15. $5 \frac{1}{2}$	15.8	6-11	5		1. 2334	2. 0	8-10	2		$23.22 \frac{3}{4}$	23.23	14-15	I	
4. $4 \frac{3}{4}$	4. 5	$8-7$		1	$15.16 \frac{1}{2}$	15.17	11 - 12	1		2. 11	2. $11 \frac{1}{4}$	10-14	4		24. $1 \frac{1}{3}$	24. $2 \frac{1}{4}$	$15-10$		5
4. 7	4. $8 \frac{3}{4}$	7 -8	1		15.22	16. I	12-10		2	2.14	2. $15 \frac{1}{4}$	$14-12$		2	24. $2 \frac{1}{2}$	24. 4	10-12	2	
4. $10 \frac{1}{4}$	4. $10 \frac{1}{2}$	8-9	1		16. 6	16. 7	10-11	1		2. $16 \frac{1}{4}$	2. 17	12 -11		1	24. $11 \frac{3}{4}$	24. 12	12-14	2	
4. 113	4. 12	9-7		2	16.114 ${ }^{\frac{1}{4}}$	16. $11 \frac{3}{4}$	11-10		1	2. 20	2. $21 \frac{1}{2}$	11-12	1		24. 14	24. $14 \frac{1}{2}$	14-15	1	
4. 13	4. $13 \frac{1}{4}$	7-10		13	16.17	16.173	10-9		1	3. $1 \frac{3}{4}$	3. 2	12-15	3		$24.21 \frac{1}{4}$	$24.21 \frac{1}{2}$	15-10	11	
4. 17	4. $18 \frac{1}{2}$	10-0	6		17. $0 \frac{1}{2}$	17. $1 \frac{1}{2}$	9-7		2	3. 12	3. 13	15 -14		1	25. $8 \frac{1}{2}$	25. $8 \frac{3}{4}$	10-6		4
4.19	4. $19 \frac{1}{2}$	0-2	18		17. $4 \frac{1}{2}$	17. 71	7-9	2		3. $16 \frac{1}{4}$	3. $16 \frac{1}{2}$	14-15	1		26. 5	26. 7	6-7	1	
$4.22 \frac{1}{4}$	$4.22 \frac{1}{2}$	2-10	8		17. $15 \frac{3}{4}$	$17.16 \frac{1}{4}$	9-10	1		$3.20 \frac{1}{4}$	$3.20 \frac{3}{4}$	15 -14		1	26. $8 \frac{1}{2}$	26. $8 \frac{3}{4}$	7-8	1	
5. 0	5. $0 \frac{1}{4}$	10-12	2		18. 4	18. 6	10-11	1		4. $4 \frac{1}{4}$	4. 5	14-15	1		26. $11 \frac{1}{2}$	26. 14	8-10	2	
5. 4	5. $4 \frac{1}{4}$	12-0	4		18. $10 \frac{1}{4}$	18.103	11-10		1	4. $10 \frac{3}{4}$	4. 12	$15-0$	1		26. $19 \frac{1}{2}$	26. $19 \frac{3}{4}$	10-11	1	
5. $10 \frac{1}{4}$	5. 12	0-6	6		18.174 ${ }^{\frac{3}{4}}$	18.18	10-9		1	4.2 I 1	4. 22	0-15		1	27. $6 \frac{1}{2}$	27. 7	$11-12$	1	
$5.13 \frac{1}{2}$	5.14	6-12	6		19. $5 \frac{1}{4}$	19. $6 \frac{1}{2}$	9-11	2		5. $5 \frac{1}{2}$	5. 7	15 -	I		27. 15	27.15 ${ }^{2}$	12-11		I
$5.15 \frac{1}{2}$	5.153	12-11		1	$19.21 \frac{3}{4}$	19.22 $\frac{1}{4}$	11-10		1	5. $8 \frac{1}{2}$	5. $9 \frac{1}{2}$	--15		1	27.17	27.18	11-10		1
5.182	5. 19	11 $1-12$	1		20. $9 \frac{1}{2}$	20. $9 \frac{3}{4}$	10-9		1	5. $20 \frac{1}{2}$	5.21	15-0	1		28. ○	28. I	10-7		3
6. $1 \frac{1}{4}$	6. $1 \frac{1}{2}$	12-13	1		20. $18 \frac{1}{2}$	20.19	9-10	I		6. 2	6. $3 \frac{1}{2}$	--15		1	28. $8 \frac{1}{2}$	28. $8 \frac{3}{4}$	7-8	I	
6. $2 \frac{1}{4}$	6. $2 \frac{1}{2}$	$13-11$		2	2I. $11 \frac{1}{3}$	21.12	10-II	1		6. 5	6. $5 \frac{1}{2}$	$15-0$	1		29. 8	29. $9 \frac{1}{4}$	8-II	3	
6. $6 \frac{3}{4}$	6. $7 \frac{1}{4}$	11-12	I		21. $23 \frac{1}{4}$	21.233	11-10		I	8. 7	8. 8	$0-1$	1		29. $16 \frac{1}{4}$	29.16 $\frac{1}{2}$	$11-10$		I
6. $9 \frac{1}{4}$	6. 10	$12-11$		1	22. $2 \frac{1}{2}$	22. 3	10-II	I		8. $10 \frac{1}{2}$	8. $10 \frac{3}{4}$	-2	1		29.184	$29.22 \frac{3}{4}$	10-12	2	
6. $11 \frac{1}{2}$	6.12	I 1 -13	2		22. $7 \frac{3}{4}$	22. 9	11-15	4		8. $20 \frac{3}{4}$	8.21	2-1		I	$29.23 \frac{1}{2}$	29. $23 \frac{3}{4}$	$12-11$		1
6. $13 \frac{1}{2}$	6. 14	$13-12$		1	22. $17 \frac{1}{4}$	22. $17 \frac{1}{2}$	15-10		5	9. 2	9. $2 \frac{1}{2}$	1-0		1	30. $2 \frac{3}{4}$	30. 3	$11-12$	1	
6. $19 \frac{3}{4}$	6.20	$12-11$		1	23. $2 \frac{1}{4}$	23. $2 \frac{1}{2}$	10-15	5		10.12	10. 13	0-15		1	30. 8	30. $8 \frac{1}{4}$	12-0	4	
6. 22	6. $22 \frac{1}{2}$	$11-10$		1	23. $3 \frac{1}{2}$	23. 4	$15-14$		1	10. $19 \frac{1}{4}$	10. $19 \frac{1}{2}$	$15-11$		4	30. $9 \frac{3}{4}$	30.10	0-12		4
7. $7 \frac{3}{4}$	7. 8	10-11	1		23. $5 \frac{3}{4}$	23. $8 \frac{1}{2}$	$14-10$		4	10. $20 \frac{3}{4}$	10.21	$11-10$			$30.12 \frac{3}{4}$	30. 13	12-7		5
7.10	7. $10 \frac{1}{2}$	$11-10$		1	23. $12 \frac{1}{2}$	$23.13 \frac{1}{2}$	10-9		1	11. $3 \frac{1}{4}$	II. $3 \frac{1}{2}$	10-4		6	30. 16 ${ }^{\frac{3}{3}}$		7-5		2
7. 15	$7.15 \frac{1}{4}$	10-12	2		$23.20 \frac{1}{2}$	$23.23 \frac{1}{4}$	9-7		2	$11.4 \frac{1}{4}$	II. $4 \frac{1}{2}$	$4-2$		2	30. 193	30. $21 \frac{3}{4}$	5-8	3	
7. 18	7. $18 \frac{1}{2}$	12-14	2		24. I	24. 2	7-8	1		11. $11 \frac{1}{4}$	11. $11 \frac{1}{2}$	2-3	1						
8. 2	8. $3 \frac{3}{4}$	14-15	1		24. $3 \frac{1}{2}$	24. 4	8-7		1	11. $15 \frac{3}{4}$	11. 17	3-5	2						
8. $7 \frac{3}{4}$	8. $8{ }^{4}$	$15-0$	1		24. $6 \frac{3}{4}$	24. $8 \frac{3}{4}$	7-11	4		11. 20	II. $20 \frac{1}{4}$	5-2		3			Sums	84	86
8. 16	8. $18 \frac{3}{4}$	0-2	2		24. $10 \frac{3}{4}$	24.11	11 -10		1	$11.23 \frac{1}{2}$	11. $23 \frac{3}{4}$	2-0		2					
9. $2 \frac{1}{4}$	9. $3 \frac{1}{4}$	2 -1		1	24. $16 \frac{1}{4}$	24. $16 \frac{1}{2}$	10-11	1		12. 6	12. 7	$0-1$	1						
9. $12 \frac{1}{2}$	9. 13	1 -0		1	24.21	24. $21 \frac{1}{2}$	$11-10$		1	12. $10 \frac{1}{4}$	12.1012	1-0		1					
9.14	9. $14 \frac{1}{4}$	$0-2$	2		25. $9 \frac{1}{2}$	$25.10 \frac{1}{2}$	10-9		1	12.13	12. 14	$0-1$	I		Octo	ber.			
9. $15 \frac{1}{4}$	9. $15 \frac{1}{2}$	2-1		1	25.19	$25.21 \frac{1}{4}$	9-7		2	12.213	$12.22 \frac{1}{2}$	I-O		1					
9. 18	9. $18 \frac{1}{4}$	1	1		26. 1	26. $1 \frac{1}{2}$	7-8	1		13.23	14.0	0-15		1					
9.214	9. $21 \frac{1}{2}$	2-1		1	26. $5^{\frac{1}{4}}$	26. $5 \frac{1}{2}$	$8-7$		1	14. $8 \frac{1}{2}$	14. $9^{\frac{1}{2}}$	$15-0$	3				8-6		2
10. 4 10. 12	10. 5 10. 13	1-0		1	26.7 26.113	26. $8 \frac{1}{2}$ 26. 12	$7-9$ $9-10$	2		14.14 $14.16 \frac{1}{4}$ 14	$14.14 \frac{1}{2}$ $14.16 \frac{1}{2}$	0-3	3		$\begin{array}{ll}\text { I. } & 5 \\ \text { I. } & 6 \frac{1}{2} \\ \text { I. }\end{array}$	I. $5 \frac{4}{4}$	$6-4$ $4-6$		2
10. 12	10. 13	$0-2$	2		26. $11 \frac{3}{4}$	26. 121	9-10	1		$14.16 \frac{1}{4}$ 15. 16.	$14.16 \frac{1}{2}$ 15.7	$3-2$ $2-1$		1	1. $10 \frac{10}{}$	I. $10 \frac{1}{2}$	4-6		
10. $14 \frac{3}{4}$	IO. 15	2-0		2	27. 8	27. $8 \frac{1}{2}$	10-11			15.6	15. 16. 16.	2-1		1	1. 10 1. $16 \frac{1}{2}$	I. $10 \frac{1}{2}$ I. $17 \frac{3}{4}$	6-7		
$10.20 \frac{1}{4}$	$10.20 \frac{1}{2}$	$0-1$	1		27.16	27.18	1 1-9		2	16. 193 ${ }^{\frac{3}{4}}$		1-2	1		1.162	I. $23{ }^{\text {I }}$	6-6		I
11. $0 \frac{1}{2}$	II. I	1-2	1		27.203	27.21	9-8		1	17.0	17. $0 \frac{1}{2}$	2-1		1	1. 20 2. ${ }^{0} 3$	I. 23 2. 1	6-9 $9-10$	3	
11. 7	11. $7 \frac{1}{2}$	2-1		1	28. $0 \frac{1}{2}$	28. 2	$8-7$		1	17. 9	17. $9 \frac{1}{2}$	1-2	1		2. 0 O ${ }^{\text {2. }}$	2. 2.6	9-10	1	
11.12	II. $12 \frac{1}{4}$	1-6		11	28. $8 \frac{1}{2}$	28. 9	7-8	I		17.112	17.114	2 -3	1		2. 5 5 ${ }^{\frac{3}{4}}$	2. ${ }^{\text {2. }} 8 \frac{1}{2}$	$10-9$ $9-10$		1
II. 18	11.181.	6-8	2		28. 13	28. 14	8-7		1	$17.20 \frac{1}{2}$	$17.21 \frac{3}{4}$	3-2		1	2. $18 \frac{1}{4}$	2. $18 \frac{1}{2}$	9-10	1	
II. 19 ${ }^{\frac{3}{4}}$	II. 20	8-10	2		28. $15 \frac{1}{2}$	28.161	7-6		1	$18.8 \frac{1}{4}$	18. $9 \frac{1}{4}$	2-4	2		2. 23	3. ${ }^{2}$	10-12	2	
12. $1 \frac{1}{4}$	12. $1 \frac{1}{2}$	10-9		1	28.21	28. $22 \frac{1}{2}$	6-10	4		$18.20 \frac{1}{2}$	18.22	4-2		2	3. 3	3. $3 \frac{3}{4}$	12-11		I
12. $2 \frac{3}{4}$	12. 3	9-10	I		29. $0 \frac{3}{4}$	29.23 ${ }^{4}$	$10-8$		2	19.10	19. $10 \frac{1}{2}$	2 -0		2	3. 6	3. $9 \frac{1}{2}$	$11-14$	3	
12. 5	12. $5 \frac{1}{2}$	10-9		1	29. 13	29. $13 \frac{1}{2}$	8-9	1		19.181	19. $18 \frac{1}{2}$	$0-1$	I		3. 18	3. $19 \frac{1}{4}$	$14-12$		2
12. $11 \frac{1}{4}$	12. 12	9-10	1		29. 15	29.16	$9-8$		1	$19.21 \frac{3}{4}$	19.22	1-0		1	4. 3	4. $3 \frac{1}{2}$	12-11		1
12.14	12.16	10-12	2		30. $0 \frac{3}{4}$	30. 1	8-9	1		21. $2 \frac{3}{4}$	2I. 4	$0-15$		1	4. $7 \frac{1}{2}$	4. 8.	$11-12$	1	
12.19 ${ }^{\frac{1}{4}}$	12.19 ${ }^{\frac{1}{3}}$	12-11		1	30. $3 \frac{4}{2}$	30. $4 \frac{1}{2}$	9-10	1		21. 6	21. 7	$15-0$	1		$4 \cdot 10$	4. $10 \frac{3}{4}$	12-14	2	
13. 2	13. $2 \frac{3}{4}$	$1 \mathrm{I}-10$		1	30. $15 \frac{1}{2}$	30.16	10-11	1		2.1. 19 ${ }^{\frac{1}{4}}$	21.19 ${ }^{\frac{1}{2}}$	$0-1$	1		4. $18 \frac{1}{2}$	4. 19	14-12		2
13. $15 \frac{1}{2}$	13.16	10-4	10		30.23	3 I . 0	$11-10$		1	21.22	$21.22 \frac{1}{2}$	1-0		1	4. $20 \frac{1}{4}$	4. $22 \frac{1}{4}$	$12-15$	3	
13.20 ${ }^{1}$	$13.20 \frac{1}{2}$	4-5	1		3 I .4	31. 5	10-11	1		22. $17 \frac{3}{4}$	22. $18 \frac{1}{2}$	0-12		4	5.0	5. 31	$15-12$ $12-0$		3
13. $23 \frac{1}{2}$	14. $0 \frac{1}{2}$	5-7	2		31.17	31.20	11-10		1	22.193	22.20	12-15	3		5.7	${ }_{5}^{5.74}$	12-0	4	
14. $2 \frac{3}{4}$	14. 3	7-9	2							23. 1	23. $1 \frac{1}{4}$	15-14		1	5. 11	. $5 \cdot 12$	0-1	1	
14. $4 \frac{1}{4}$	14. $4 \frac{1}{2}$	9-5		4						23. 4 41	23. 4 年	14-12		2	$5.15 \frac{3}{4}$ 5.21	$5.16 \frac{3}{4}$ $5.21 \frac{1}{4}$	$1-3$ $3-2$	2	
14. $8 \frac{1}{2}$	14. 9	5-6	I				Sums	151	104	23. $8 \frac{1}{2}$	23. $8 \frac{3}{4}$	12-15	3		5.21	$5.21 \frac{1}{4}$	$3-2$		1

Abstract of the Changers of the Direction of the Wind－continued．

$\underset{\substack{\text { Greenwich } \\ \text { Civil lime．}}}{\text { a }}$		Change of Direction	$\begin{aligned} & \text { Amount of } \\ & \text { Motion. } \end{aligned}$		GreenwichCivil Time．		$\xrightarrow[\text { Direction．}]{\text { Change of }}$	$\begin{aligned} & \text { Amount of } \\ & \text { Motion. } \end{aligned}$		Greenwich Civil Time．		Change ofDirection．	Amount of Motion．				Change ofDirection．	Amount of Motion．	
From	то		Direct．	Retro－	From	то		irect．	Retro grade	From	To		Direct．	Retro－ grade．	From	то		Direct．	${ }_{\text {Retro }}$
Oct．－cont．					Oct．－cont．					Nov．－－ont．					Nov．－cont．				
6． $1 \frac{1}{4}$	$\begin{array}{cc} d & h \\ 6 . & I_{2}^{\frac{1}{2}} \end{array}$	2－3	1				0－2	2			$\text { 3. } 17$	10－0		10			12－0	4	
6． 5	6． 6	3－2		1	21． $3 \frac{1}{4}$	21.	2－0		2	$3.17 \frac{1}{4}$	3． 181	0－2	2		19． 8	19． $8 \frac{3}{4}$	－－15		
6． $13 \frac{3}{4}$	6． 15	2－t	2		21． $5 \frac{1}{4}$	$2 \mathrm{I} .5{ }^{1}$	－-2	2		3．184	3．19	2－0		2	19．192 ${ }^{\frac{1}{3}}$	19．194	15－0	1	
6． 16	6． $16 \frac{1}{4}$	4－5	1		21． $11 \frac{1}{4}$	$21.11 \frac{1}{2}$	2 －3	1		3． 211	3.22	0－15		1	$19.21 \frac{3}{4}$	$19.22 \frac{3}{4}$	$\bigcirc-12$		4
6.	6.201	5－4		，	21．14 4	21． $14 \frac{1}{4}$	－2		1	4． 0	4． $2 \frac{1}{2}$	15－13		2	20． 1	20． 2	12－11		I
7． $9 \frac{1}{4}$	7． $9 \frac{1}{2}$	＋－5	1		21．18	21．183	－3	1		4． 4	4． $4 \frac{1}{2}$	13－11		2	20． 4	20． $4 \frac{1}{4}$	$11-12$	1	
7． $11 \frac{3}{4}$	7． 12	5－4		1	21.22	21.23	－2		1	4． 6	4． 61	11－10		1	$20.11 \frac{1}{4}$	20． $11 \frac{3}{4}$	12－14	2	
	8． 6	4－3			22． $9 \frac{3}{4}$	22.10	－3	1		4． 9	4． 12	10－14	4		20． $12 \frac{3}{4}$	20． 134	－0	2	
8． $8 \frac{3}{4}$	8． 9	3－2		1	22．14 ${ }^{\frac{1}{3}}$	22．14 ${ }^{3}$	3－4	1		4． $14 . \frac{1}{2}$	＋． 14.3	$14-$	2		20．153	20．174	0－13		3
8．13 ${ }^{\frac{3}{4}}$	8． 14	$2-1$		1	23． 01	23． 1	4－2		2	4． 18	4．18\％	10		6	20． $18{ }^{3}$	20，192	13－15	2	
9． $6 \frac{1}{3}$	9． $6 \frac{3}{4}$	1－8		9	23． 44	23． 5	2 －3	1		4．1912	4． 193	－11	1		$20.21{ }_{4}^{1}$	$20.21 \frac{1}{2}$	15－0	1	
9． $8 \frac{3}{4}$	9． $9 \frac{1}{4}$	8－10	2		23．174	23．18	3－4	1		5．113	5． $12 \frac{3}{4}$	$11-5$	10		21． $12 \frac{1}{21}$	21． 4	11		5
9． $13 \frac{3}{4}$	9． $14 \frac{1}{2}$	10－11	1		24． 0	24． $0 \frac{1}{2}$	4－5	1		5.14	5.15	－0		5	21． $6 \frac{1}{2}$	21． $6 \frac{3}{4}$	$11-12$	1	
9． $17 \frac{1}{4}$	9． $17 \frac{1}{2}$	11		1	24．53	24． 6	5－4		1	5．1912	5． 21	－－14			21． 9	21． $9 \frac{1}{3}$	－11		I
10． 8	10． 10	10－11	1		25． $11 \frac{1}{2}$	25.2	4－5	1		5． $22 \frac{1}{2}$	5.23	14－11		3	21． $10 \frac{1}{2}$	21．103	－12	1	
10． 13	10． $13 \frac{1}{4}$	$11-10$ 10		1	25． $6 \frac{1}{2}$	25．7	5－4		1	6． 5	6． $8 \frac{1}{4}$	$11-9$		2	21．12	21.123	12	4	
${ }^{10} 17$	10．183	－8		2	25．9	25． $10 \frac{1}{2}$	4－6	2		6． 14	6． 15	9－10	1		21．22 $2 \frac{1}{2}$	21． $23 \frac{3}{4}$	12		4
10． 23	$10.23 \frac{1}{2}$	8－9	I		25．153	25．16	6－5		1	6．19	6． 193	10－11	1		22． $3 \frac{1}{1}$	22． 4	12－11		1
ii． 0^{1}	II．${ }^{\frac{1}{2}}$	9		1	26． 124	26． $12 \frac{1}{2}$	5－4		1	7． 0	7．I	11－10			22． $13 \frac{1}{2}$	22．13年	－12		
II． $4 \frac{1}{2}$	11． 6	8－9	1		26．15 ${ }^{\text {a }}$	26． $16 \frac{1}{4}$	4－5	I		7.10	7． 14	12	2		22． 15	22．151	12－－0	4	
II． $11 \frac{1}{2}$	11.12	9－10	1		26．19	26．191 ${ }^{\frac{1}{4}}$	5－4			7． $22 . \frac{1}{2}$		$12-11$					$0-10$	10	
11． 14	II． 144^{3}	10－9					4－5	1		8． $7 \frac{1}{2}$	8． 8	11－12	1		22． $21 \frac{1}{3}$	22．213	10－11	1	
II． 16	11． $19 \frac{1}{4}$	9－6		3	27． $1 \frac{1}{21}$	27． 214	5－4			8． 10	8． 11	12－11			$\begin{array}{ll}\text { 23．} & 0 \\ 23 . & \\ \\ \\ \end{array}$	23．${ }^{1}$	8－4		3
11． 23	11． 23.8	6－8	2		28． 8	28． 11	4－10	6		8． 12	8． 13	$11-13$ $13-14$	$\stackrel{2}{1}$		$\begin{array}{ll}\text { 23．} & 3 \\ \text { 23．} & 9\end{array}$	23． $3 \frac{1}{2}$	8－4		4
12．${ }_{\text {12，}} 12$	12．${ }^{4}{ }^{\frac{3}{4}}$	8	6		28．15	28．161	$10-8$ $8-2$		2	8． 1414	8． 143 8.16	$13-14$ $14-12$	1		23． 23． 920	23． 93	4－6	${ }_{1}^{2}$	
12． 12.9	12． 12.10	$14-0$ $0-1$	${ }_{1}^{2}$		29． 29．	${ }_{\text {29．}}{ }^{\text {29．}} 3$	$8-2$ $2-1$		1	8． $188 \frac{1}{2}$	8.19	12－11		1	23.14	23．14 ${ }^{\frac{1}{2}}$	7－6		
12.17	12．181	1－2	1		29． $4 \frac{1}{2}$	29． 5	1 －2	1		9． $8 \frac{3}{3}$	9． $10 \frac{1}{4}$	11－13	2		23． 163	23．174	－5		1
13．I	13． 11	${ }^{2}-3$	1		29．142	29．14 ${ }^{\frac{3}{4}}$	1		1	9． 122_{4}^{4}	9． $13{ }_{4}^{7}$	13－14	1		23．19	23．19 ${ }^{\frac{3}{4}}$	5－6	1	
13． $5 \frac{1}{4}$	13． $6 \frac{1}{2}$	3－2		1	29．1714	29．172	－2	1		9． $15 \frac{1}{2}$	9．153	14－13			23.22	23． $22 \frac{1}{2}$	－5		1
$13.22 \frac{1}{4}$	13.23	2－4	2		29.23	29． $23 \frac{1}{4}$	1		1	9． 201	9． $20 \frac{1}{1}$	13－12			24．${ }^{\circ}$	24． $0 \frac{1}{2}$	5－6	1	
15． $1 \frac{1}{4}$	15． $1 \frac{1}{2}$	4		2		30． 1	1－2			10． $7 \frac{1}{4}$	10． 73	12－11			24． $11{ }^{3}$	24． $12 \frac{1}{2}$	6－7	1	
15． 7	15． $9 \frac{1}{3}$	2－5	3		30． $2 \frac{3}{4}$	30． 3	${ }^{2-1}$		1	10． $13 \frac{3}{4}$	10． 16	11－9			24．1731	24．18	7－6		
15．121	15．123	5－6	1		30． $4 \frac{1}{4}$	30． 5	1－2			Io． 194	11． $1{ }^{13}$	9－12	3		24.21 25.83	24． 212	6－5		
15．15 ${ }^{15}$	115.15	6－7	1		30． $15 \frac{1}{2}$	30．153	－1		1	II． $8 \frac{1}{2}$	II． 11112	$12-15$ $15-14$	3		25． 84 25． 113	25． 9 25． 12	5－4		1
15．17	15．17 ${ }^{\text {d }}$	7－6			30．23 ${ }^{\text {a }}$	$30.23 \frac{1}{2}$	－1		1	II． 20 11.23	11． $20 \frac{1}{2}$	$15-14$ $14-12$			25．113	25．12	4－3		1
15．21	15． 2111	6－5		1	31．${ }^{3 \frac{3}{4}}$		－1	I	1	11．23年 12.4	12． 12.4	14－12			25.14 26.0	25．154	3－2		
16． 5	16． $5 \frac{1}{4}$	4－5	1		3I． $13 \frac{1}{4}$	31．13 $3 \frac{1}{2}$	$0-14$		2	$12.13 \frac{1}{2}$	12． 18	－－8		3	26． 4	26． $4 \frac{1}{4}$	1－11		6
16． $9 \frac{1}{2}$	16． 11	5－6	1		31.14	31．19	14－10		4	12．184	12．182 ${ }^{\frac{1}{2}}$	－			26． $6 \frac{1}{4}$	26． 8	${ }_{1} 1-8$		3
16．14	16． 15			1						12．20를	12.21	9－10	1		26． $13 \frac{3}{4}$	26． 14	8	1	
16． $18 \frac{3}{4}$	16． 19	5－6	1							13． 92	13． 93	$10-$		1	26． 16	26．172	－8		
16． $20 \frac{3}{4}$	$16.21 \frac{1}{2}$	6－5		I			Sums	108	90	13.12	13.13	9－8		1	26．223	26． $23 \frac{1}{2}$	8－4		4
16．23 ${ }^{\frac{1}{2}}$	17． 2	5－7	2							13.20	13.23	8－10	2		27． $1 \frac{3}{4}$	27． 2	4－6	2	
17． $6 \frac{1}{4}$	17． $8 \frac{1}{2}$	7－9	2							14． 3 3	14． 4	10－11	1		27．14	27．14 4 年	6－5		1
17． $14 \frac{1}{2}$	17． 15	9－10	1		Nove	ber．				14． $7 \frac{1}{2}$	14． 814	－10			27． $18 \frac{1}{2}$	27． $19 \frac{1}{2}$	5－6	1	
17.18	17．183	10－11	1							15． $0 \frac{1}{4}$	15． 1	－9			27． 23	28．I	6－10	4	
$\begin{gathered} 17.21 \frac{1}{2} \\ 18.6 \end{gathered}$	$\begin{aligned} & 1.23 \\ & 18.2 \frac{1}{2} \end{aligned}$	$11-12$ $12-11$	I				10－11			$15.10 \frac{1}{2}$ 15.22	15．123	9－0	7		28． $4 \frac{3}{4}$ 28． 8 年	28． 6 28． 9 28	$10-12$ $12-13$	2 1	
18．10	18．101	11－10		1	I． $3 \frac{3}{4}$	I． $4 \frac{1}{2}$	12	1		16． $11^{\frac{1}{4}}$	16． $1 \frac{1}{2}$	15－14		1	28． $10 \frac{3}{4}$	28．11	13－12		
18.16	18．161	10－9		1		I． 81	－11		1	16． 4	16． 5	14－15	1		28． 20	28.21	12－11		I
18．20	18.21	9－11	2		1． $9 \frac{3}{4}$	I． 101	11－12	1		16． 7	16． $10 \frac{3}{4}$	15－12		3	29.	29．${ }^{2 \frac{1}{4}}$	$11-10$		1
$18.21{ }^{\frac{3}{4}}$	18.23	11－10		1	1． $12 \frac{1}{4}$	I． $12 \frac{1}{2}$	12－13	1		16． 11	16． $11 \frac{1}{2}$	12－14	2		29． 5	29． 6	10－11		
19．74	19． 101	10－12	2		1． 16	I． 17	13－12		1	16． 16	16．164	14－0	2		29．12 ${ }^{\frac{1}{4}}$	29．1201	$11-2$	7	
19．164	19．161	12－14	2		2． $4 \frac{1}{4}$	2.5	12－13	I		16．163	16． $17 \frac{1}{2}$	－ 12		4	29．174	29．173	$2-3$	1	
19． 20	19．201	14－13		1	2． 6	2． $6 \frac{1}{2}$	13－12		1	16． $21 \frac{3}{4}$	16． 22	12－11			29．23	30． 0	$3-2$		1
$19.21{ }^{\frac{3}{4}}$	19．23 ${ }^{\text {a }}$	13－11		2	2.	2． $9 \frac{3}{4}$	12－14	2		17． 3	17． 5	11－10		1	$\text { 30. } 3 \frac{1}{2}$	$\begin{array}{ll} 30 . & 3 \frac{3}{4} \\ 30 . & 6 \end{array}$	$2-3$ $3-2$		
20． 20． 20， 2	20． $20 \frac{1}{1}$	11－12	1		2． $15 \frac{1}{2}$	2． $15 \frac{3}{3}$	14－13		1	17．${ }^{\frac{3}{3}}$	17．10	10－5	11		$\begin{aligned} & 30.5 \frac{1}{2} \\ & 30.16 \end{aligned}$	30． 6 30． $17 \frac{1}{2}$	$3-2$ $2-3$		1
20． 20． $6 \frac{1}{2}$ 20，	20． $4 \frac{4}{20}$	$12-2$ $2-1$	6		2． $17 \frac{1}{2}$	2． $17 \frac{3}{4}$	13－12		1	17．113 ${ }^{17}$	17．12 ${ }^{\text {17 }}$ 17．16	$5-3$ $3-0$		2	30．16	$30.17 \frac{1}{2}$	2－3		
20.17	20．174	1 －0		1	3． 6	3． $7 \frac{3}{4}$	11－10		1	17．171 ${ }^{\frac{1}{2}}$	17． $21 \frac{1}{4}$	$0-12$		4			Sums	134	141

Greenwich Magnetical and Meteorological Results， 1910.

Mean Hourly Measures of the Horizontal Movement of the Air in each Month, and Greatrst and Least Hourly Measures, as derived from the Records of Robinson's Anemometer.

Hour ending	1910.												$\begin{gathered} \text { Mean for } \\ \text { Hear } \\ \text { Year. } \end{gathered}$
	January.	February.	Narch.	April.	May.	June.	July.	August.	September.	October.	November.	December.	
${ }^{\text {h }}$	$\begin{gathered} \text { Miles. } \\ 15.3 \end{gathered}$	$\begin{gathered} \text { Miles. } \\ 16 \cdot 3 \end{gathered}$	$\begin{array}{r} \text { siiles. } \\ 9 \cdot 3 \end{array}$	$\begin{gathered} \text { Milles. } \\ \mathbf{1 2} .0 \end{gathered}$	$\begin{gathered} \text { Miles. } \\ \mathbf{I} 0.7 \end{gathered}$	$\begin{gathered} \text { Miles.es. } \\ 8.4 \end{gathered}$	$\begin{gathered} \text { Miles. } \\ 10.3 \end{gathered}$	$\begin{gathered} \text { Miles. } \\ 10.2 \end{gathered}$	$\begin{gathered} \text { Miles. } \\ 9 \cdot 3 \end{gathered}$	$\begin{gathered} \text { Miles. } \\ \mathrm{I} 0.3 \end{gathered}$	$\begin{gathered} \text { Miles. } \\ 12.9 \end{gathered}$	$\underset{\text { Miles. }}{\substack{\text { M } \\ \text { 1 }}}$	Miles. 11.8
2	14.9	16.4	$8 \cdot 8$	11.8	$11 \cdot 1$	$9 \cdot 3$	10.2	10.1	$9 \cdot 1$	10.2	13.5	157	1188
3	14.5	16.5	$9 \cdot 3$	11.7	11.0	$9 \cdot 3$	10.5	9'9	$8 \cdot 6$	10.0	13.1	149	11.6
4	14.6	16.5	$9 \cdot 5$	113	10.5	$8 \cdot 5$	$10 \cdot 8$	9.4	$8 \cdot 3$	$9 \cdot 6$	13.9	14.5	114
5	14^{11}	15.5	9.2	$11^{\prime 2}$	$10^{\circ} 9$	$7 \% 9$	10×9	$9 \cdot 8$	7.9	9.4	13.2	14.5	11.2
6	14°	154	9.0	11.2	$11 \cdot 1$	$8 \cdot 2$	11.2	94	8.0	$9 \cdot 4$	127	154	$11 \cdot 3$
7	143	15.5	$9 \cdot 1$	114	114	$9 \cdot 5$	11.6	9×9	$8 \cdot 2$	9.1	12.3	15.5	11.5
8	14.4	15.5	8.9	11.8	123	9.5	12.0	$11^{\circ} 2$	8.6	$10 \cdot 0$	11.8	15.2	11.8
9	$14^{\circ} 8$	$16 \cdot 3$	$9^{\circ} 0$	12.4	13.4	10.2	12.5	12.I	8.9	9.6	12.5	15.6	12.3
10	153	$16 \cdot 9$	$10 \cdot 1$	13.2	14.1	${ }^{11} 1$	12.7	12.7	$10 \cdot 1$	10.9	12.2	15.6	12.9
11	154	- 17.6	10.8	14^{11}	14.4	11.2	13.2	13.5	$10 \cdot 3$	11.8	127	$16 \cdot 7$	13.5
Noon.	159	18.9	12.1	14.9	15.4	113	13.2	14.1	$10 \cdot 5$	12.4	13.9	17.5	14.2
$13^{\text {b }}$	17^{11}	$20^{1} 1$	13.0	$16 \cdot 1$	15.8	$12 \cdot 3$	14°	14.8	11'1	13.8	15^{1}	18.6	15.2
14	16.0	19.5	127	15.8	15.0	12.5	13.6	14.5	11.5	$13^{\circ} \mathrm{O}$	14.7	17.8	147
15	1509	19.5	13.4	16.3	15.3	13°	$14^{\prime 1}$	15.8	12.1	13.5	14.5	17.8	$15^{\circ} 1$
16	153	18.9	133	16.6	15%	$13^{1.1}$	137	15.5	11-8	134	14.3	17.1	$14^{\circ} 9$
17	13.9	18.1	129	$16 \cdot 6$	153	13°	137	147	114	12.5	14.7	16.8	14.5
18	14.3	16.7	117	15.5	14*0	$12 \cdot 3$	12.5	13.9	10.9	11.8	14°	16.5	13.7
19	14.5	16.6	$10 \cdot 5$	137	13.3	11.5	11.6	13.5	$10 \cdot 9$	11.6	14.8	17°	13.3
20	15.5	$16 \cdot 3$	10.2	13.1	12.0	10*9	11.5	12.0	10*	11.5	14.3	17.5	12.9
21	$16 \cdot 1$	159	$9 \cdot 8$	12.2	11.8	$10 \cdot 3$	$10 \cdot 5$	11.0	$9 \cdot 6$	11.6	137	16.9	12.5
22	16.5	$16 \cdot 4$	9×7	12.2	11.3	$9 \cdot 6$	10.7	10.8	$9 \cdot 4$	11.2	13.5	$16 \cdot 6$	12.3
23	17°	16.2	$9 \cdot 5$	13°	11.6	$9 \cdot 2$	10.4	10.5	9.5	10.5	13.4	$16 \cdot 1$	12.2
Midnight.	16.2	$15^{\circ} 6$	93	12.4	${ }^{11} 1$	$8 \cdot 7$	$9 \cdot 8$	$10 \cdot 6$	$8 \cdot 9$	10.8	137	$15^{\circ} 9$	119
Means	15.2	17°	$10 \cdot 5$	13.4	$12 \cdot 8$	10.5	119	12.1	$9 \cdot 8$	11.2	13.6	$16 \cdot 3$	129
$\left.\begin{array}{l}\text { Greatest Hourly } \\ \text { Measures....... }\end{array}\right\}$	37	47	31	37	35	34	3^{2}	36	28	41	43	52	...
$\left.\begin{array}{l}\text { Least } \quad \text { Hourly } \\ \text { Measures........ }\end{array}\right\}$	1	3	-	-	-	-	1	1	I	1	\bigcirc	2	\ldots

Mean Electrical Potential of the Atmosphere, from Thomson's Electrometer, for each Civil Day.
(Each result is the mean of Twenty-four Hourly Ordinates from the Photographic Register. The scale employed is arbitrary : the sign + indicates positive potential.)

Day of Month.	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.
${ }_{1}^{\text {d }}$	+ 534	+ 600	+ 769	+ 801	+ 572	+ 368	+ 325	+ 250	+ 420	$+164$	+ 387	- 52
2	+ 84	+ 266	+ 473	$+740$	+ 394	+ 306	+287	+ 238	+ 254	+ 76	+ 737	- 88
3	+ 148	+ 712	+ 535	+1045	+ 829	$+557$	+ 349	$+310$	+ 435	+ 530	$+35^{8}$	+ 112
4	+ 205	+ 878	+ 528	+ 734	+1015	+ 327	+ 487	+221	+ 401	+ 385	$+824$	+ 12
5	+252	+ 666	+ 477	$+842$	+ 754	...	+ 343	+315	+ 497	+ 270	+951	$+164$
6	+ 269	+ 74	$+344$	+ 542	+ 700	...	+ 332	+ 507	+ 532	+ 236	+ 456	+ 269
7	$+302$	+ 134	$+44^{8}$	+ 715	+1032	+ 3^{8}	+ 434	$+333$	$+448$	+215	+ 451	$+271$
8	+285	+ 332	+ 331	$+887$	+900	+87	+ 377	+ 236	+ 331	+224	+ 717	+171
9	+ 73	+ 637	+ 28	+1183	+1007	+ 192	+ 357	+ 181	+ 538	+ 242	$+9^{82}$	$+83$
10	+185	+ 473	+ 472	+ 383	+1026	+ 97	+ 371	+ 264	+ 532	+237	+ 850	+ 103
11	+ 300	+ 428	+ 525	$+563$	+ 903	+ 60	+ 244	+206	+ 206	\cdots	$+590$	+ 128
12	+ 799	+715	+ 278	$+476$	+513	+ 47	+249	+ 219	+ 467	+209	+ 810	+ 143
13	+815	+ 93	+ 794	+ 240	$+.312$	+ 199	+ 268	+ 154	+ 679	+ 195	+ 99	+ 193
14	+243	+ 434	+1017	+ 590	+ 394	+ 535	+227	+ 146	+267	+212	$+310$	+ 149
15	+ 207	+ 378	+1104	+ 448	+ 382	+ 394	+212	+259	+205	+ 348	+ 430	$+250$
16	+ 69	$+530$	+921	+ 340	+301	+ 340	+185	+ 349	+229	+302	+ 991	+ 203
17	+ 359	+ 185	+ 967	+ 702	+ 347	+ 389	+132	+212	$+372$	+ 105	+1063	$+356$
18	+ 304	+ 232	+ 945	+625	+221	+181	+ 152	$+270$	+ 196	+205	+ 9^{12}	+ 640
19	+ 68 I	+ 165	+1172	+ 265	+ 192	+ 187	+ 298	+ 254	+ 327	+ 295	+1035	+ 407
20	+ 847	+ 108	$+868$	+ 324	+ 290	+ 225	+208	+ 232	$+635$	$+36_{4}$	$+912$	+352
21	+1184	+ 401	+ 803	+ 406	+ 322	+ 324	+ 140	+ 203	+ 773	+ 362	+1115	+210
22	+1250	+ 373	+ 919	+ 564	+ 252	+ 458	+ 214	+ 373	+ 494	+255	+1079	+619
23	+ 4^{18}	+ 558	+1112	+ 877	+ 424	+ 370	$+408$	+ 329	+ 537	$+214$	+ 494	+ 449
24	$+377$	+ 538	+1011	\ldots	+ 711	+ 282	+ 287	+ 241	+ 494	+ 262	$+350$	+ 203
25	+ 945	+ 430	+ 719	$+742$	+812	+ 224	+141	+285	+ 193	+257	$+610$	+ 600
26	+1398	$+737$	+ 603	+1079	+ 707	+ 372	+ 440	+ 132	+ 207	+215	$+828$	$+606$
27	+1217	$+884$	+ 732	+ 855	$+556$	+ 507	+312	$+310$	+ 260	+180	+ 57	$+842$
28	+ 275	+ 524	+ 762	+ 595	+ 473	+ 274	+224	+ 108	+ 249	+ 175	+ 542	+1143
29	+801		+683	+1097	+ 220	+ 253	+ 261	$+161$	+ 177	+ 247	+ 886	+ 791
30	+ 991		+915	$+1025$	+ 595	+ 477	+ 298	$+210$	$+230$	+ 260	+144	+ 940
31	+837		+ 968		+ 448		+ 281	+ 296		+ 548		+ 995
Means	$+537$	$+446$	+717	$+679$	+ 568	+ 288	+285	+ 252	+ 386	+ 260	+ 666	$+363$

Monthly Mean Electrical Potential of the Atmosphere, from Thouson's Electrometrr, at every Hour of the Day.

(The results depend on the Photographic Register, using all days of complete record. The scale employed is arbitrary : the sign + indicates positive potential.)

$\begin{gathered} \substack{\text { Greour } \\ \text { Creon wich } \\ \text { Civil Time. }} \end{gathered}$	1910.												
	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.	
Midnight	$+502$	+ 499	+ 697	$+790$	$+562$	+ 306	+ 300	+ 277	+ 355	+ 244	+ 678	$+332$	$+462$
$1^{\text {h }}$	+ 478	+ 413	+621	+ 729	+ 527	+ 293	+ 276	+ 242	+ 32 I	+ 231	+629	+ 312	+ 423
2	+ 445	+ 344	$+569$	+ 659	+ 497	+ 274	+ 247	+ 219	+ 295	+ 209	+ 556	+ 311	+ 385
3	+ 426	+ 328	+ 556	+ 591	$+480$	+ 263	+ 229	$+210$	+ 286	+ 178	+ 552	+289	+ 366
4	+ 386	+ 284	+ 555	+ 531	+ 451	+ 277	+221	+ 202	+ 275	+ 195	+ 561	+282	$+352$
5	+ 367	+ 286	+ 568	$+549$	+ 449	+284	+ 234	+ 205	+ 280	+ 186	+ 568	+ 277	+ 354
6	+ 403	+ 291	+ 569	+ 597	+ 467	+ 289	$+241$	+221	+ 283	+179	+589	+287	+ 368
7	+ 446	+ 334	$+585$	+622	+ 524	$+280$	+ 245	+232	+ 284	+ 192	+ 599	+ 308	$+388$
8	+ 473	+ 345	+632	+614	+ 556	+ 254	+ 260	+235	+ 331	+205	+622	+ 328	$+405$
9	+ 523	+ 394	+ 744	+ 679	+ 589	+ 279	$+270$	+ 253	+ 375	+ 240	+ 678	$+350$	+ 448
10	+ 594	+ 421	+ 834	$+781$	+615	+ 321	+ 324	+ 309	$+468$	+ 286	$+790$	+ 399	$+512$
11	+619	+ 435	+ 891	+ 734	+ 609	+ 298	+ 359	+278	$+485$	+300	+ 776	+ 379	+ 514
Noon	+638	+ 423	+ 834	+ 692	+ 598	+ 266	+ 309	+ 265	+ 445	+ 280	+ 710	+ 376	$+486$
$13^{\text {h }}$	$+640$	+ 433	$+73^{8}$	$+59^{2}$	+ 606	+ 264	$+315$	+ 243	+ 400	+ 266	+ 694	$+390$	$+465$
14	+617	+ 418	$+687$	+ 610	+ 573	+ 240	+ 302	+ 196	+ 390	+ 266	+ 730	+ 394	$+452$
15	+ 592	+ 450	+ 693	$+651$	+ 543	+ 193	+ 290	+ 184	+ 408	$+270$	+ 676	$+403$	$+446$
16	+ 597	+ 472	+ 744	+ 682	+ 537	+ 235	$+313$	+ 220	+ 456	+ 306	+ 702	$+450$	$+476$
17	+629	+ 549	+ 804	+ 654	+ 575	+ 283	+ 297	+ 269	+ 476	+ 334	+ 696	$+442$	+ 501
18	$+6$	+ 599	$+84 \mathrm{I}$	$+680$	+ 6	+ 316	+ 307	+ 284	+ 477	$+33^{8}$	+ 690	+ 444	+ 519
19	+ 611	+ 597	+ 851	+ 741	$+636$	$+308$	+ 308	+ 287	+ 473	+ 335	+ 712	+ 418	+ 523
20	+ 570	+602	+ 821	+ 736	+ 648	+ 344	+ 288	+282	+ 458	+ 300	+ 719	+ 382	+ 513
21	$+$	+601	+ 792	$+730$	+ 680	+ 351	+ 286	+ 304	+ 44 I	+ 314	+ 668	+ 400	+ 511
22	+ 572	+ 605	+ 801	+ 821	+681	+ 354	$+309$	+ 321	+ 414	+ 296	+ 692	$+375$	+ 520
23	+ 554	+ 576	+ 775	+829	+615	+ 341	$+312$	+ 304	+ 392	+ 278	+ 690	+ 391	$+505$
24	+ 502	$+498$	+ 704	+ 767	+ 565	+ 319	$+300$	+ 270	+ 358	+237	+ 665	+ 379	$+464$
$0^{\text {b }} .-23^{\text {b }}$.	+ 537	$+446$	+ 717	+ 679	+ 568	+ 288	+ 285	+252	+ 386	+ 260	+ 666	$+363$	+ 454
$m=1{ }^{\text {b }} .-24^{\text {b }}$.	+ 537	$+446$	+ 717	+ 678	$+568$	+ 289	+ 285	+251	+ 386	+ 259	+ 665	+ 365	$+454$
$\left.\begin{array}{c} \text { Number of Days } \\ \text { employed. } \end{array}\right\}$	31	28	31	29	31	28	31	31	30	30	30	31	\ldots

Monthly Mean Electrical Potential of the Atmosphere, from Thomson's Electrometer, on Rainy Days, at every Hour of the Day.
(The results depend on the Photographic Register, using all days on which the rainfall amounted to or exceeded oin.ozo.
The scale employed is arbitrary : the sign + indicates positive potential.)

$\underset{\substack{\text { Hour, } \\ \text { Greenwich } \\ \text { Civil Time. }}}{\text {. }}$	1910.												$\underset{\substack{\text { Yearly } \\ \text { Means. }}}{\text { a }}$
	January.	February.	March.	April	May.	June.	July.	August.	September.	Octover.	November.	December.	
Midnight	+ 331	$+433$	+216	+ 649	+ 544	+ 353	+ 319	+ 256	$+340$	+ 179	+ 547	+ 143	+ 359
$1^{\text {b }}$	$+318$	+ 337	+132	+ 578	+ 526	+ 354	+ 280	+ 197	+ 235	$+163$	+ 507	+ 131	+ 313
2	+ 269	+ 257	$+272$	+ 503	+ 509	+ 300	+ 245	+ 167	+ 200	+ $1+5$	+ 414	+ 144	+ 285
3	+ 265	+245	+ 384	+ 4^{12}	$+44^{6}$	+ 285	+221	+ 167	+ 215	+ 94	+ 424	+ 126	+ 274
4	+ 194	+ 201	$+356$	+ 299	$+383$	+ 297	+207	+ 149	+ 200	$+141$	+ 435	+ 119	+ 248
5	+ 144	+ 213	+ 278	+ 370	+ 385	+ 278	+ 207	+ 159	+ 105	+ 154	+ 444	+ 126	+ 239
6	+ 176	+ 225	+212	+ 490	$+407$	+ 302	+213	+ 187	- 50	+ 145	+ 460	+ 115	+ 240
7	+ 194	+ 256	+ 196	+ 553	+ 526	+ 292	+22.1	+ 208	- 170	+179	$+4^{61}$	+ 136	+ 254
8	+ 221	+ 256	+ 326	+ 5^{62}	+ 589	+ 251	+ 259	+221	+ 225	+ 189	+ 467	+ 147	+ 309
9	+ 276	+ 321	+ 556	+ 636	+ 607	+ 274	+ 261	$+24^{8}$	+ 80	+ 200	+ 52 I	+ 170	+ 346
10	+ 347	+ 339	+ 724	+ 740	$+586$	$+316$	+293	+ 304	$+320$	+ 212	+ 609	+ 192	$+415$
11	+ 375	+348	+ 764	+ 740	$+571$	+ 308	+ 345	+ 273	+ 335	+ 248	+ 582	$+161$	+ 42 I
Noon	$+387$	+ 326	+ 674	+ 689	+ 650	+ 269	$+268$	+ 256	+ 315	+223	+ 439	+ 142	+ 387
I $3^{\text {h }}$	+ 390	+ 356	+ 566	+ 398	+ 668	+ 320	+313	+ 253	+ 235	+ 207	+ 386	+ 191	$+357$
14	$+355$	+ 341	$+522$	+ 479	+ 634	+ 246	+ 319	+ 170	+ 205	+ 209	+ 426	+ 209	+ 343
15	+ 308	+ 359	$+574$	+ 533	+ 587	+151	+ 296	+ 154	+ 220	+213	+ 327	+ 222	+ 329
16	+ 296	$+363$	+ 654	+ 556	+ 567	$+201$	+ 322	+ 191	+ 280	+ 260	+ 326	+ 259	+ 356
17	+ 357	+ 447	+ 738	+ 494	+ 619	+ 276	+ 283	+ 258	+ 310	+ 285	+ 342	+ 234	+ 387
18	+ 411	+ 528	+ 804	+ 552	+ 670	+ 303	+ 292	+ 274	+ 305	+ 270	+ 373	+ 227	$+417$
19	+ 317	+ 522	+ 838	+ 586	+ 693	+ 221	+ 283	+ 259	+ 300	+258	+ 493	+ 191	+413
20	+ 240	+ 548	+ 748	+ 487	+ 722	+ 306	+ 242	+ 213	+ 300	+217	+ 527	+ 151	+ 392
21	+ 288	+ 549	+ 550	$+490$	$+772$	+ 345	+217	+ 237	+ 280	+ 267	+ 442	183	+ 385
22	+ 319	+ 543	+ 592	+ 787	$+810$	+ 322	+ 249	+ 283	+ 275	+ 277	+ 476	+ 157	$+424$
23	+ 336	+ 522	$+616$	+ 930	$+777$	+311	+ 252	+ 288	$+265$	+252	$+460$	196	+ 434
24	+ 263	+ 438	+ 514	+ 906	+ 691	+ 278	+267	$+261$	+ 255	$+162$	+ 425	$+211$	+ 389
$0^{\mathrm{b}} .-23^{\text {b }}$.	+ 296	$+368$	+512	+ 5^{63}	+ 594	+ 287	$+267$	+ 224	+ 222	+ 208	+ 454	+ 170	$+347$
$\Sigma \quad 1^{\mathrm{h}} .-24^{\mathrm{h}}$.	+ 294	+ 368	+ 525	+ 574	$+600$	+ 284	+ 265	+224	+ 218	+ 207	+ 449	+ 172	$+348$
$\left\{\begin{array}{c} \text { Number of Days } \\ \text { employed. } \end{array}\right\}$	12	20	5	9	14	11	15	14	2	11	15	18	...

Monthly Mean Electrical Potential of the Atmosphere, from Thomson's Electrometer, on Non-Rainy Days,

 at every Hour of the Day.(The results depend on the Photographic Register, using only those days on which no rainfall was recorded. The scale employed is arbitrary : the sign + indicates positive potential.)

$\underset{\substack{\text { Greour } \\ \text { Crenwich } \\ \text { Civil Time. }}}{\substack{\text { Tim } \\ \text {. }}}$	1910.												$\underset{\substack{\text { Yearly } \\ \text { Means. }}}{\text { a }}$
	January.	February.	March.	April.	May.	June.	July.	August.	September.	Octaber.	November.	December.	
Midnight	+ 557	+ 785	+ 853	+ $9+6$	+ 602	$+303$	+ 290	+ 294	$+362$	+ 276	+ 847	+ 683	$+566$
$\mathrm{I}^{\text {h }}$	+ 531	+ 722	+ 780	+ 8_{33}	+ 559	+ 291	+ 283	+ 283	+ 338	+ 268	+ 786	+652	+ 527
2	+ 513	+ 675	+ 692	+ 754	+ 541	+ 281	+ 260	+ 274	+ 317	+ 246	+ 731	+623	+ 492
3	+ 483	+610	+ 653	+ 727	+ 566	+ 270	+ 252	+ 255	+ 306	+ 227	+ 718	+589	+ 471
4	+ 452	$+558$	$+648$	+ 702	+ 561	+ 287	+ 257	+ 252	+ 293	+ 229	+ 727	+ 575	$+462$
5	+ 4^{63}	+ 537	+ 673	+ 686	+552	+ 309	+ 282	+ 255	+ 310	+ 204	+ 734	+ 552	+ 4^{63}
6	+511	+ 575	+ 683	+713	+ 553	+303	+ 287	+ 260	+ 329	+ 189	+ 760	+ 586	+ 479
7	+ 573	+ 648	+ 694	+ 768	+ 561	+ 295	+ 276	+ 249	+ 341	+ 180	+ 773	+621	+498
8	+611	+ 660	+ 728	+ 797	+ 569	+ 273	+ 263	+ 241	+ 368	+185	+ 795	+ 659	+512
9	+ 666	+610	+ 819	+ 823	+615	+ 297	+ 281	+ 255	+ 427	+ 234	+ 850	+ 714	+ 549
10	+ 742	+605	$+888$	+872	+679	+ 340	$+350$	+ 325	+ 513	+ 294	+ 981	+816	+ 617
11	+ 771	+650	$+948$	$+796$	+687	+ 299	$+366$	+ 297	+ 540	+ 297	+ 975	+833	+ 622
Noon	+ 778	+ 690	+ 906	+754	+ 587	$+272$	+ 341	+ 283	+ 487	+ 279	+ 988	+ 886	+ 604
$13^{\text {h }}$	+ 767	$+667$	+ 801	+ 727	+ 532	+ 231	+ 318	+ 241	$+446$	+ 256	+1005	+ 872	+ 572
14	+ 775	+675	+ 739	+ 695	+ 509	+233	+ 284	+ 229	+ 441	+ 254	$+1037$	+833	+ 559
15	+ 776	+ 733	+733	+ 727	+ 533	+217	+ 275	+224	+ 460	+ 258	+1046	+ 850	+ 569
16	$+800$	$+835$	$+778$	+ 775	+551	+ 255	+ 288	$+263$	$+512$	+ 284	+1108	+915	+614
17	+ 816	+915	+ 834	+ 761	+ 545	+ 295	+ 300	+ 293	+ 535	+ 303	+1083	+ 936	+635
18	+ 818	+ 907	+ 878	+803	+ 537	$+333$	$+312$	+ 299	+527	+ 309	+1015	+950	+641
19	+ 836	+ 968	$+890$	+ 946	+ 58 I	$+367$	+ 333	+ 322	+ 509	+ 310	+ 948	+ 945	$+663$
20	+ 842	+952	+ 869	$+970$	+ 554	+ 366	+ 332	+ 355	+ 488	+ 287	+ 934	+914	$+655$
21	+ 818	+ 988	$+876$	+932	+ 583	+ 351	+ 340	$+369$	+ 474	+ 292	+920	+ 909	+654
22	+ 813	+1035	+ 895	+971	+ 652	$+3^{61}$	+ 344	+ 354	+ 440	+ 279	+ 941	+ 884	+ 664
23	+ 764	+ 987	$+884$	+951	$+630$	$+363$	$+336$	+ 318	+ 417	$+264$	+ 963	+ 862	+ 645
24	$+722$	+880	$+846$	+852	+ 596	+ 347	+ 295	+ 272	+ 378	+ 259	+ 951	+806	+ 600
$0^{\text {b }} .-23^{\text {b }}$.	+ 687	+ 749	$+798$	+810	+ 577	$+300$	$+302$	+ 283	+ 424	$+258$	+ 903	+ 777	$+572$
$\bar{\sim} \quad 1_{1}{ }^{\text {h }}-24^{\text {h }}$.	+ 693	+ 753	+ 797	+ 806	+ 576	+ 301	+ 302	+ 282	+ 425	+ 258	+ 907	+783	+ 574
$\left\{\begin{array}{c} \text { Number of Days } \\ \text { employed. } \end{array}\right\}$	16	4	20	11	10	15	11	13	22	14	12	8	\ldots

ROYAL OBSERVATORY, GREENWICH.

OBSERVATIONS

OF
PARHELIA, PARASELENÆ,

ANI)

LUMINOUS METEORS.

1910.

Observations of Parhelia and Paraselena made at the Royal Observatory, Greenwich, in the Year 1910.

The Parhelion of igio March 6.

8 40. Partial solar halo, and parhelion to left of sun, observed.
8 45. The halo has now disappeared.
855 . The parbelion is now obscured by fracto-cumulus cloud.
w. H. Timburf.

The Parhelia of 1910 April 4.

h m
9 o. A small are of the 22° halo with a brightly coloured inverted arch observed directly above the sun.
9 3. The dotted portion of the ordinary halo is now visible, together with a faint mock sun (a), a little outside the halo.
9 10. Another mock sun (b), faintly coloured, appears.
9 15. The phenomena have now disappeared.
A. E. Loomes.

The Paraselene of 19 io May 23.
Appearance of partial lunar halo and paraselene between $21^{h} 30^{m}$ and $22^{\text {h }}$.
A. E. Loomes.

The Parhelia of 1910 August 12.
164°. Upper portion of ordinary 22° halo observed.
16 56. The halo shows bright prismatic colouring, and a parhelion has now appeared to the left of the sun, together with an inverted arc 46° directly above the sun. The parhelion and inverted arc are both brightly coloured.
17 o. The phenomena have now disappeared.

> I. J. R. Edney.

18 o. Upper portion of ordinary halo observed.
sun
18 40. A brightly coloured parhelion to the right of the sun observed, but no halo visible.
A. E. Loomes.

The Parhelia of 1910 September 10.
h m
12 . A faintly coloured partial halo (a) of 22° radius is observed.
12 10. A bright parhclion (b) appears to the left of the sun.
12 20. The partial halo (a) has now disappeared, but the parhelion (b) is very brightly coloured, and an arc of a circle (c) passing through (b) and parallel to the horizon is visible, with a white parhelion (d) about 90° from the sun.

12 25. The phenomena have now faded.
D. J. R. Edney.
A. E. Loomes.

The Paraselene of 1910 November 16.
Appearance of partial lunar halo of 22° radius and paraselene to right of moon at $o^{\text {h }} 15^{\mathrm{m}}$.
E. Kirby.
E. L. Richardson.

Month and Day, 1910.	Greenwich Civil Time.	Observer.	Brightness of Meteor in Star Magnitudes	Colour of Meteor.	Duration of Meteor in Seconds of Time.	Appearance and Duration of Train.	Length of Meteor's Degrees.	Path of Meteor in the Sky.
August 1	b m s				s		-	$\bigcirc \circ \circ$
	22. 9. 32	L	1	Yellow	0.5	Bright streak	24	$318+13$ to $332-7$
	22. 23.17	T	1	Yellow	0.5	Slight	3	$53+12$ to $51+10$
	22. 30. 1	T \& L	1	Yellow	$1 *$	Bright streak	25	$323+3$ to $308-18$
	22. 33. 6	T	2	White	$0 \cdot 3$	None	13	$323+65$ to $353+64$
	22. 38.6	L	>1	White	0.5	Slight	21	$326+4$ to $306-3$
	22. $4^{8 .} 27$	T \& L	$>$ I	Yellow	1.0	Bright streak	30	$317+30$ to $299+55$
	23. 1. 52	L	2	White	0.5	None Bright ${ }^{\text {a }}$ (reat	11	8 8 17
	23. 15.45	T \& L	$>$ I	Yellow	1.0	Bright streak	29	$17+30$ to $0+4$
August I	○. ○. 6	L	2	White	$0 \cdot 3$	None	7	$38+48$ to $32+43$
	22. 19. 21	T\&L	2	White	$0 \cdot 3$	Faint	13	$8+56$ to $345+54$
	22. 20. 7	L	>1	Yellow	$1{ }^{\circ}$	Bright : 2 secs.	29	$0+55$ to $315+46$
	22. 30.52	T \& L	>1	Yellow	1.0	Bright: 1 sec.	37	$30+71$ to $237+72$
	22. 34.54	T	1	Yellow	0.5	Slight	10	$8+44$ to $354+47$
	22. 43. 30	L	2	White	$0 \cdot 3$	Slight	29	$0+55$ to $315+46$
	22. 56. 49	T	2	Yellow	$2 \cdot 0$	Slight	37	$353+30$ to $30+56$
	23. 2. 15	L	1	Yellow	0.5	Slight	12	$8+30$ to $357+23$
	23. $7 \cdot 39$	T \& L	2	White	$0 \cdot 5$	Slight	17	$3+33$ to $345+29$
	23. 12. 27	T\&L	2	White	$\bigcirc \cdot 3$	None	16	$8+33$ to $353+24$
	23.16. 29	T	2	White	$0 \cdot 4$	None	14	$11+63$ to $341+62$
	23. 25.45	L	I	Yellow	10	Slight	22	$359+32$ to $341+17$
August	22. 22. 29	L	1	Yellow	1.0	Slight	22	$353+17$ to $336+2$ $336+48$ to $282+35$
	22. 27. 21	L	2	White	0.5	Slight	41	$336+48$ to $282+35$
	22. 29. 6	T	2	White	0.5	Slight	11	$21+44$ to $9+39$
	22.32. 9	T	1	Yellow	0.5	Slight	8	$8+45$ to $357+44$
	22. 32. 49	T \& L	>1	Yellow	10	Bright : 2 secs.	30	$17+53$ to $353+29$
	22. 34.4	E	$>$ I	White	0.5	Bright : 3 secs.	12	$326+11$ to $315+7$
	22. 42.56	E \& T	2	Yellow	0.5	Faint	19	$357+27$ to $341+17$
	22. 48.13	T	2	White	0.5	Slight	18	$12+53$ to $9+35$
	22.49. 30	E	1	Bluish-white	0.5	Bright	15	$347+15$ to $338+4$
	23. 10. 6	T\&L	>1	Yellow	1.0	Bright: 2 secs.	23	$0+35$ to $339+22$
	23.15. 18	T\&L	>1	Yellow	$1 \times$	Bright: i sec.	20	$351+10$ to 341 - 7
	23. 35. 14	L	I	Yellow	$0 \cdot 5$	Slight	6	$41+46$ to $39+40$
	23.47. 1	T \& L	2	White	$0 \cdot 3$	Slight	8	$50+47$ to $53+40$
August 13	0. 30. 11		2	White		Slight	8	$42+59$ to $27+61$
	-. 50.33	L	2	White	$0 \cdot 3$	None	3	$51+48$ to $53+45$
	-. 53.59	T	1	White	0.5	Slight	19	$38+67$ to $342+71$
	-. 56. 11	L	2	White	$0 \cdot 3$	Slight	6	$54+45$ to $59+40$
	1. 49.54	L	1	White	0.5	None	10	$51+40$ to $53+30$
	2. 2. 31	L	3	Bluish-white	0.5	None	14	$38+30$ to $35+17$
	2. 5.44	T	1	White	0.5	Slight	7	$147+65$ to $135+70$
	2. 15.20	L	2	White	$0 \cdot 3$	Slight	9	$69+55$ to $84+54$
	2. 17. 45	T	2	White	$0 \cdot 3$	None	9	$341+27$ to $344+18$
	2. 20. 49	T	1	White	0.5	Slight	34	$330+35$ to $300+15$
	2. 23. 49	L	I	Yellow	0.5	Slight	11	$77+48$ to $89+42$
	2. 26. I.I	T	> 1	Yellow	$1 \cdot 0$	Bright : 2 secs.	28	$6+34$ to $342+17$
	2. 30.40	T	1	White	1×0	Slight	22	$359-4$ to $347-22$
	2. 34.48	T	2	White	0.5	None	12	$345+27$ to $339+17$
	2. 37.27	L	1	Yellow	$0 \cdot 5$	Slight	10	$81+29$ to $86+20$
	2. 40.17	T	2	Yellow	0.3	None	23	$11+4$ to $9-18$
	2. 43.55	T	1	Yellow	0.5	None	12	$356+5$ to $353-7$
	2. 48.47	L	2	Bluish-white Bluish-white	0.3 0.5	None None		$47+56$ to $53+53$ $45+65$ to $24+80$
	2. 52.31	L	I	Bluish-white	$0 \cdot 5$	None	16	$45+65$ to $24+80$

0

[^0]: Rofal Observatory, Greenwich, 1912 February 2.

